29 resultados para Spectral theory, differential operators, quantum graphs, indefinite operators
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Electronic absorption and fluorescence spectra based on transmission measurements of thin layers obtained from new perylene−zeolite L composites and new dye1,dye2−zeolite L sandwich composites, the latter acting as antenna systems, have been investigated and analyzed. The influence of extra- and intraparticle self-absorption on the spectral shape and fluorescence quantum yield is discussed in detail. Due to its intraparticle origin, self-absorption and re-emission can often not be avoided in organized systems such as dye−zeolite L composites where a high density of chromophores is a prerequisite for obtaining the desired photophysical properties. We show, however, that it can be avoided or at least minimized by preparing dye1,dye2−zeolite L sandwich composites where donors are present in a much larger amount than the acceptors because they act as antenna systems.
Resumo:
The (2 + 1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by an SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.
Resumo:
The in-medium physics of heavy quarkonium is an ideal proving ground for our ability to connect knowledge about the fundamental laws of physics to phenomenological predictions. One possible route to take is to attempt a description of heavy quark bound states at finite temperature through a Schrödinger equation with an instantaneous potential. Here we review recent progress in devising a comprehensive approach to define such a potential from first principles QCD and extract its, in general complex, values from non-perturbative lattice QCD simulations. Based on the theory of open quantum systems we will show how to interpret the role of the imaginary part in terms of spatial decoherence by introducing the concept of a stochastic potential. Shortcomings as well as possible paths for improvement are discussed.
Resumo:
We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.
Resumo:
We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.
Resumo:
On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions.
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics