8 resultados para Sands
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France)
Resumo:
The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mössbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mössbauer spec- trum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.
Resumo:
The lithostratigraphic framework of Lake Van, eastern Turkey, has been systematically analysed to document the sedimentary evolution and the environmental history of the lake during the past ca 600,000 years. The lithostratigraphy and chemostratigraphy of a 219 m long drill core from Lake Van serves to separate global climate oscillations from local factors caused by tectonic and volcanic activity. An age model was established based on the climatostratigraphic alignment of chemical and lithological signatures, validated by 40Ar/39Ar ages. The drilled sequence consists of ca 76% lacustrine carbonaceous clayey silt, ca 2% fluvial deposits, ca 17% volcaniclastic deposits and 5% gaps. Six lacustrine lithotypes were separated from the fluvial and event deposits, such as volcaniclastics (ca 300 layers) and graded beds (ca 375 layers), and their depositional environments are documented. These lithotypes are: (i) graded beds frequently intercalated with varved clayey silts reflect rising lake-levels during the terminations; (ii) varved clayey silts reflect strong seasonality and an intralake oxic–anoxic boundary, for example, lake-level highstands during interglacials/interstadials; (iii) CaCO3-rich banded sediments are representative of a lowering of the oxic-anoxic boundary, for example, lake-level decreases during glacial inceptions; (iv) CaCO3-poor banded and mottled clayey silts reflect an oxic–anoxic boundary close to the sediment-water interface, for example, lake-level low-stands during glacials/stadials; (v) diatomaceous muds were deposited during the early beginning of the lake as a fresh water system; and (vi) fluvial sands and gravels indicate the initial flooding of the lake basin. The recurrence of lithologies (i) to (iv) follows the past five glacial/interglacial cycles. A 20 m thick disturbed unit reflects an interval of major tectonic activity in Lake Van at ca 414 ka BP.
Resumo:
The nineteenth century uncovered and analysed the tragic episodes of witch-hunting and ‘witch’ trials common in Renaissance Europe. Fascinating not only to historians, this subject also inspired men of letters who popularized the image of the witch as an old, ugly and evil person, who thus deserved her lot. Jules Michelet’s La sorcière of 1862 takes a very different approach. Simultaneously a literary and historical work, the book proved scandalous as it rehabilitated the figure of the witch, shedding favourable light on her image: it was the witch who was able to save a last spark of humanity in moments of despair; it was she who acted as comforter and healer to the people. In the context of nineteenth-century literature, certain works by female authors that focused on ‘witches,’ stand out. Whilst certain male authors (Michelet included) presented the witch as a figure from the past, who had finally perished in the 17th century, texts such as George Sand’s La petite Fadette (1848) or Eliza Orzeszkowa’s Dziurdziowie (1885), suggest that the end of witch trials did not imply an end to accusations, persecutions, and even executions of ‘witches’ – and, that in terms of culture, witchcraft or sorcery had not disappeared from the societies they knew.
Resumo:
Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be used for detrital studies. Second, we find that spatial variations in tracer concentration and erosion have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests that highest present-day erosion rates (in Whataroa catchment) are not situated at the range front but around 10 km into the mountain belt.
Resumo:
We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20–100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.