6 resultados para SPECTRAL FUNCTIONS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel approach for the reconstruction of spectra from Euclidean correlator data that makes close contact to modern Bayesian concepts. It is based upon an axiomatically justified dimensionless prior distribution, which in the case of constant prior function m(ω) only imprints smoothness on the reconstructed spectrum. In addition we are able to analytically integrate out the only relevant overall hyper-parameter α in the prior, removing the necessity for Gaussian approximations found e.g. in the Maximum Entropy Method. Using a quasi-Newton minimizer and high-precision arithmetic, we are then able to find the unique global extremum of P[ρ|D] in the full Nω » Nτ dimensional search space. The method actually yields gradually improving reconstruction results if the quality of the supplied input data increases, without introducing artificial peak structures, often encountered in the MEM. To support these statements we present mock data analyses for the case of zero width delta peaks and more realistic scenarios, based on the perturbative Euclidean Wilson Loop as well as the Wilson Line correlator in Coulomb gauge.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When considering NLO corrections to thermal particle production in the “relativistic” regime, in which the invariant mass squared of the produced particle is K2 ~ (πT)2, then the production rate can be expressed as a sum of a few universal “master” spectral functions. Taking the most complicated 2-loop master as an example, a general strategy for obtaining a convergent 2-dimensional integral representation is suggested. The analysis applies both to bosonic and fermionic statistics, and shows that for this master the non-relativistic approximation is only accurate for K2 ~(8πT)2, whereas the zero-momentum approximation works surprisingly well. Once the simpler masters have been similarly resolved, NLO results for quantities such as the right-handed neutrino production rate from a Standard Model plasma or the dilepton production rate from a QCD plasma can be assembled for K2 ~ (πT)2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T2.33TC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extraction of the finite temperature heavy quark potential from lattice QCD relies on a spectral analysis of the real-time Wilson loop. Through its position and shape, the lowest lying spectral peak encodes the real and imaginary part of this complex potential. We benchmark this extraction strategy using leading order hard-thermal loop (HTL) calculations. I.e. we analytically calculate the Wilson loop and determine the corresponding spectrum. By fitting its lowest lying peak we obtain the real- and imaginary part and confirm that the knowledge of the lowest peak alone is sufficient for obtaining the potential. We deploy a novel Bayesian approach to the reconstruction of spectral functions to HTL correlators in Euclidean time and observe how well the known spectral function and values for the real and imaginary part are reproduced. Finally we apply the method to quenched lattice QCD data and perform an improved estimate of both real and imaginary part of the non-perturbative heavy ǪǬ potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the block numerical range Wn(L) of an operator function L with respect to a decomposition H = H1⊕. . .⊕Hn of the underlying Hilbert space. Our main results include the spectral inclusion property and estimates of the norm of the resolvent for analytic L . They generalise, and improve, the corresponding results for the numerical range (which is the case n = 1) since the block numerical range is contained in, and may be much smaller than, the usual numerical range. We show that refinements of the decomposition entail inclusions between the corresponding block numerical ranges and that the block numerical range of the operator matrix function L contains those of its principal subminors. For the special case of operator polynomials, we investigate the boundedness of Wn(L) and we prove a Perron-Frobenius type result for the block numerical radius of monic operator polynomials with coefficients that are positive in Hilbert lattice sense.