64 resultados para SIMULATION OF ELECTRONIC DEVICES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Energy harvesting devices are widely discussed as an alternative power source for todays active implantable medical devices. Repeated battery replacement procedures can be avoided by extending the implants life span, which is the goal of energy harvesting concepts. This reduces the risk of complications for the patient and may even reduce device size. The continuous and powerful contractions of a human heart ideally qualify as a battery substitute. In particular, devices in close proximity to the heart such as pacemakers, defibrillators or bio signal (ECG) recorders would benefit from this alternative energy source. The clockwork of an automatic wristwatch was used to transform the hearts kinetic energy into electrical energy. In order to qualify as a continuous energy supply for the consuming device, the mechanism needs to demonstrate its harvesting capability under various conditions. Several in-vivo recorded heart motions were used as input of a mathematical model to optimize the clockworks original conversion efficiency with respect to myocardial contractions. The resulting design was implemented and tested during in-vitro and in-vivo experiments, which demonstrated the superior sensitivity of the new design for all tested heart motions.
Resumo:
Background Transcatheter aortic valve implantation (TAVI) is a treatment option for high-risk patients with severe aortic stenosis. Previous reports focused on a single device or access site, whereas little is known of the combined use of different devices and access sites as selected by the heart team. The purpose of this study is to investigate clinical outcomes of TAVI using different devices and access sites. Methods A consecutive cohort of 200 patients underwent TAVI with the Medtronic CoreValve Revalving system (Medtronic Core Valve LLC, Irvine, CA; n = 130) or the Edwards SAPIEN valve (Edwards Lifesciences LLC, Irvine, CA; n = 70) implanted by either the transfemoral or transapical access route. Results Device success and procedure success were 99% and 95%, respectively, without differences between devices and access site. All-cause mortality was 7.5% at 30 days, with no differences between valve types or access sites. Using multivariable analysis, low body mass index (<20 kg/m2) (odds ratio [OR] 6.6, 95% CI 1.5-29.5) and previous stroke (OR 4.4, 95% CI 1.2-16.8) were independent risk factors for short-term mortality. The VARC-defined combined safety end point occurred in 18% of patients and was driven by major access site complications (8.0%), life-threatening bleeding (8.5%) or severe renal failure (4.5%). Transapical access emerged as independent predictor of adverse outcome for the Valve Academic Research Consortium–combined safety end point (OR 3.3, 95% CI 1.5-7.1). Conclusion A heart team–based selection of devices and access site among patients undergoing TAVI resulted in high device and procedural success. Low body mass index and history of previous stroke were independent predictors of mortality. Transapical access emerged as a risk factor for the Valve Academic Research Consortium–combined safety end point.
Resumo:
Background Through this paper, we present the initial steps for the creation of an integrated platform for the provision of a series of eHealth tools and services to both citizens and travelers in isolated areas of thesoutheast Mediterranean, and on board ships travelling across it. The platform was created through an INTERREG IIIB ARCHIMED project called INTERMED. Methods The support of primary healthcare, home care and the continuous education of physicians are the three major issues that the proposed platform is trying to facilitate. The proposed system is based on state-of-the-art telemedicine systems and is able to provide the following healthcare services: i) Telecollaboration and teleconsultation services between remotely located healthcare providers, ii) telemedicine services in emergencies, iii) home telecare services for "at risk" citizens such as the elderly and patients with chronic diseases, and iv) eLearning services for the continuous training through seminars of both healthcare personnel (physicians, nurses etc) and persons supporting "at risk" citizens. These systems support data transmission over simple phone lines, internet connections, integrated services digital network/digital subscriber lines, satellite links, mobile networks (GPRS/3G), and wireless local area networks. The data corresponds, among others, to voice, vital biosignals, still medical images, video, and data used by eLearning applications. The proposed platform comprises several systems, each supporting different services. These were integrated using a common data storage and exchange scheme in order to achieve system interoperability in terms of software, language and national characteristics. Results The platform has been installed and evaluated in different rural and urban sites in Greece, Cyprus and Italy. The evaluation was mainly related to technical issues and user satisfaction. The selected sites are, among others, rural health centers, ambulances, homes of "at-risk" citizens, and a ferry. Conclusions The results proved the functionality and utilization of the platform in various rural places in Greece, Cyprus and Italy. However, further actions are needed to enable the local healthcare systems and the different population groups to be familiarized with, and use in their everyday lives, mature technological solutions for the provision of healthcare services.
Resumo:
Advanced electronic alerts (eAlerts) and computerised physician order entry (CPOE) increase adequate thromboprophylaxis orders among hospitalised medical patients. It remains unclear whether eAlerts maintain their efficacy over time, after withdrawal of continuing medical education (CME) on eAlerts and on thromboprophylaxis indications from the study staff. We analysed 5,317 hospital cases from the University Hospital Zurich during 2006-2009: 1,854 cases from a medical ward with eAlerts (interventiongroup) and 3,463 cases from a surgical ward without eAlerts (controlgroup). In the intervention group, an eAlert with hospital-specific venous thromboembolism (VTE) prevention guidelines was issued in the electronic patient chart 6 hours after admission if no pharmacological or mechanical thromboprophylaxis had been ordered. Data were analysed for three phases: pre-implementation (phase 1), eAlert implementation with CME (phase 2), and post-implementation without CME (phase3). The rates of thromboprophylaxis in the intervention group were 43.4% in phase 1 and 66.7% in phase 2 (p<0.001), and increased further to 73.6% in phase3 (p=0.011). Early thromboprophylaxis orders within 12 hours after admission were more often placed in phase 2 and 3 as compared to phase 1 (67.1% vs. 52.1%, p<0.001). In the surgical control group, the thromboprophylaxis rates in the three phases were 88.6%, 90.7%, 90.6% (p=0.16). Advanced eAlerts may provide sustained efficacy over time, with stable rates of thromboprophylaxis orders among hospitalised medical patients.
Resumo:
BACKGROUND: After bovine spongiform encephalopathy (BSE) emerged in European cattle livestock in 1986 a fundamental question was whether the agent established also in the small ruminants' population. In Switzerland transmissible spongiform encephalopathies (TSEs) in small ruminants have been monitored since 1990. While in the most recent TSE cases a BSE infection could be excluded, for historical cases techniques to discriminate scrapie from BSE had not been available at the time of diagnosis and thus their status remained unclear. We herein applied state-of-the-art techniques to retrospectively classify these animals and to re-analyze the affected flocks for secondary cases. These results were the basis for models, simulating the course of TSEs over a period of 70 years. The aim was to come to a statistically based overall assessment of the TSE situation in the domestic small ruminant population in Switzerland. RESULTS: In sum 16 TSE cases were identified in small ruminants in Switzerland since 1981, of which eight were atypical and six were classical scrapie. In two animals retrospective analysis did not allow any further classification due to the lack of appropriate tissue samples. We found no evidence for an infection with the BSE agent in the cases under investigation. In none of the affected flocks, secondary cases were identified. A Bayesian prevalence calculation resulted in most likely estimates of one case of BSE, five cases of classical scrapie and 21 cases of atypical scrapie per 100'000 small ruminants. According to our models none of the TSEs is considered to cause a broader epidemic in Switzerland. In a closed population, they are rather expected to fade out in the next decades or, in case of a sporadic origin, may remain at a very low level. CONCLUSIONS: In summary, these data indicate that despite a significant epidemic of BSE in cattle, there is no evidence that BSE established in the small ruminant population in Switzerland. Classical and atypical scrapie both occur at a very low level and are not expected to escalate into an epidemic. In this situation the extent of TSE surveillance in small ruminants requires reevaluation based on cost-benefit analysis.
Resumo:
Two major difficulties arise when taking blood samples in children: the challenge of venous access and the comparatively large amount of blood required.
Resumo:
In this study, we show the use of three-dimensional printing models for preoperative planning of transcatheter valve replacement in a patient with an extreme porcelain aorta. A 70-year-old man with severe aortic stenosis and a porcelain aorta was referred to our center for transcatheter aortic valve replacement. Unfortunately, the patient died after the procedure because of a potential ischemic event. Therefore, we decided to fabricate three-dimensional models to evaluate the potential effects of these constructs for previous surgical planning and simulation of the transcatheter valve replacement.
Resumo:
Focusing of four hemoglobins with concurrent electrophoretic mobilization was studied by computer simulation. A dynamic electrophoresis simulator was first used to provide a detailed description of focusing in a 100-carrier component, pH 6-8 gradient using phosphoric acid as anolyte and NaOH as catholyte. These results are compared to an identical simulation except that the catholyte contained both NaOH and NaCl. A stationary, steady-state distribution of carrier components and hemoglobins is produced in the first configuration. In the second, the chloride ion migrates into and through the separation space. It is shown that even under these conditions of chloride ion flux a pH gradient forms. All amphoteric species acquire a slight positive charge upon focusing and the whole pattern is mobilized towards the cathode. The cathodic gradient end is stable whereas the anodic end is gradually degrading due to the continuous accumulation of chloride. The data illustrate that the mobilization is a cationic isotachophoretic process with the sodium ion being the leading cation. The peak height of the hemoglobin zones decreases somewhat upon mobilization, but the zones retain a relatively sharp profile, thus facilitating detection. The electropherograms that would be produced by whole column imaging and by a single detector placed at different locations along the focusing column are presented and show that focusing can be commenced with NaCl present in the catholyte at the beginning of the experiment. However, this may require detector placement on the cathodic side of the catholyte/sample mixture interface.