15 resultados para Routes of Vehicles
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Transmissible spongiform encephalopathies (TSE) form a group of human and animal diseases that share common features such as (a) distinct pathological lesions in the central nervous system, (b) transmissibility at least in experimental settings, and (c) a long incubation period. Considerable differences exist in the host range of individual TSEs, their routes of transmission, and factors influencing the host susceptibility (such as genotype). The objective of this review was to briefly describe the main epidemiological features of TSEs with emphasis on small ruminant (sheep, goats) TSE, bovine spongiform encephalopathy (BSE) in cattle and chronic wasting disease (CWD) in deer and elk.
Resumo:
For the first time in the literature to date, we report 2 cases of transplantation of yeast-infected cardiac allografts. In both cases, endocardial vegetations were observed before graft implantation. Microbiologic samples grew yeasts: Rhodotorula glutinis was found close to the left atrial appendage in the first case and Candida parapsilosis was identified in a vegetation located at the base of the tricuspid valve in the second case. We discuss the possible routes of donor organ infection and management of these 2 unusual cases.
Resumo:
The consumption of immunoglobulins (Ig) is increasing due to better recognition of antibody deficiencies, an aging population, and new indications. This review aims to examine the various dosing regimens and research developments in the established and in some of the relevant off-label indications in Europe. The background to the current regulatory settings in Europe is provided as a backdrop for the latest developments in primary and secondary immunodeficiencies and in immunomodulatory indications. In these heterogeneous areas, clinical trials encompassing different routes of administration, varying intervals, and infusion rates are paving the way toward more individualized therapy regimens. In primary antibody deficiencies, adjustments in dosing and intervals will depend on the clinical presentation, effective IgG trough levels and IgG metabolism. Ideally, individual pharmacokinetic profiles in conjunction with the clinical phenotype could lead to highly tailored treatment. In practice, incremental dosage increases are necessary to titrate the optimal dose for more severely ill patients. Higher intravenous doses in these patients also have beneficial immunomodulatory effects beyond mere IgG replacement. Better understanding of the pharmacokinetics of Ig therapy is leading to a move away from simplistic "per kg" dosing. Defective antibody production is common in many secondary immunodeficiencies irrespective of whether the causative factor was lymphoid malignancies (established indications), certain autoimmune disorders, immunosuppressive agents, or biologics. This antibody failure, as shown by test immunization, may be amenable to treatment with replacement Ig therapy. In certain immunomodulatory settings [e.g., idiopathic thrombocytopenic purpura (ITP)], selection of patients for Ig therapy may be enhanced by relevant biomarkers in order to exclude non-responders and thus obtain higher response rates. In this review, the developments in dosing of therapeutic immunoglobulins have been limited to high and some medium priority indications such as ITP, Kawasaki' disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, myasthenia gravis, multifocal motor neuropathy, fetal alloimmune thrombocytopenia, fetal hemolytic anemia, and dermatological diseases.
Resumo:
Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, SigmaOHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and SigmaOHPHE were highest in converter workers (13.5 and 37.2 microg/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures.
Resumo:
The intensive use of nano-sized particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of nanoparticles (NP) with biological systems after various routes of exposure needs to be investigated using well-characterized NP. We report here on the generation of gold-NP (Au-NP) aerosols for inhalation studies with the spark ignition technique, and their characterization in terms of chemical composition, physical structure, morphology, and specific surface area, and on interaction with lung tissues and lung cells after 1 h inhalation by mice. The originally generated agglomerated Au-NP were converted into compact spherical Au-NP by thermal annealing at 600 °C, providing particles of similar mass, but different size and specific surface area. Since there are currently no translocation data available on inhaled Au-NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation in rodents. For anticipated in vivo systemic translocation and dosimetry analyses, radiolabeled Au-NP were created by proton irradiating the gold electrodes of the spark generator, thus forming gamma ray emitting 195Au with 186 days half-life, allowing long-term biokinetic studies. The dissolution rate of 195Au from the NP was below detection limits. The highly concentrated, polydisperse Au-NP aerosol (1–2 × 107 NP/cm3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation and number concentration. After collection on filters particles can be re-suspended and used for instillation or ingestion studies.
Resumo:
Immunotherapy for type I allergies is well established and is regarded to be the most efficient treatment option besides allergen avoidance. As of today, different forms of allergen preparations are used in this regard, as well as different routes of application. Virus-like particles (VLPs) represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances activation of innate as well as adaptive immune responses. CpG motifs represent intensively investigated and potent direct stimulators of plasmacytoid dendritic cells and B cells, while T cell responses are enhanced indirectly through increased antigen presentation and cytokine release. This article will focus on the function of VLPs loaded with DNA rich in nonmethylated CG motifs (CpGs) and the clinical experience gained in the treatment of allergic rhinitis, demonstrating clinical efficacy also if administered without allergens. Several published studies have demonstrated a beneficial impact on allergic symptoms by treatment with CpG-loaded VLPs. Subcutaneous injection of VLPs loaded with CpGs was tested with or without the adjuvant alum in the presence or absence of an allergen. The results encourage further investigation of VLPs and CpG motifs in immunotherapy, either as a stand-alone product or as adjuvants for allergen-specific immunotherapy.
Resumo:
In vivo infection routes of parasites have remained something of a "black box", in which only snapshot views of fixed tissues are available. Clearly, there exists a strong need for imaging approaches to visualise living parasites within intact organs and animals. In vivo imaging of fluorescent Plasmodium parasites now provides us with exciting insights into the infection process, from the bite of the infected mosquito to the invasion of liver cells, and alternative approaches using luciferase-expressing parasites have been used to monitor their dissemination in mice. This rapidly developing field will go a long way towards deepening our understanding of host-parasite interactions at different levels.
Resumo:
The application of pesticides and fertilizers in agricultural areas is of crucial importance for crop yields. The use of aircrafts is becoming increasingly common in carrying out this task mainly because of their speed and effectiveness in the spraying operation. However, some factors may reduce the yield, or even cause damage (e.g., crop areas not covered in the spraying process, overlapping spraying of crop areas, applying pesticides on the outer edge of the crop). Weather conditions, such as the intensity and direction of the wind while spraying, add further complexity to the problem of maintaining control. In this paper, we describe an architecture to address the problem of self-adjustment of the UAV routes when spraying chemicals in a crop field. We propose and evaluate an algorithm to adjust the UAV route to changes in wind intensity and direction. The algorithm to adapt the path runs in the UAV and its input is the feedback obtained from the wireless sensor network (WSN) deployed in the crop field. Moreover, we evaluate the impact of the number of communication messages between the UAV and the WSN. The results show that the use of the feedback information from the sensors to make adjustments to the routes could significantly reduce the waste of pesticides and fertilizers.
Resumo:
Background Transcatheter aortic valve implantation (TAVI) is a treatment option for high-risk patients with severe aortic stenosis. Previous reports focused on a single device or access site, whereas little is known of the combined use of different devices and access sites as selected by the heart team. The purpose of this study is to investigate clinical outcomes of TAVI using different devices and access sites. Methods A consecutive cohort of 200 patients underwent TAVI with the Medtronic CoreValve Revalving system (Medtronic Core Valve LLC, Irvine, CA; n = 130) or the Edwards SAPIEN valve (Edwards Lifesciences LLC, Irvine, CA; n = 70) implanted by either the transfemoral or transapical access route. Results Device success and procedure success were 99% and 95%, respectively, without differences between devices and access site. All-cause mortality was 7.5% at 30 days, with no differences between valve types or access sites. Using multivariable analysis, low body mass index (<20 kg/m2) (odds ratio [OR] 6.6, 95% CI 1.5-29.5) and previous stroke (OR 4.4, 95% CI 1.2-16.8) were independent risk factors for short-term mortality. The VARC-defined combined safety end point occurred in 18% of patients and was driven by major access site complications (8.0%), life-threatening bleeding (8.5%) or severe renal failure (4.5%). Transapical access emerged as independent predictor of adverse outcome for the Valve Academic Research Consortium–combined safety end point (OR 3.3, 95% CI 1.5-7.1). Conclusion A heart team–based selection of devices and access site among patients undergoing TAVI resulted in high device and procedural success. Low body mass index and history of previous stroke were independent predictors of mortality. Transapical access emerged as a risk factor for the Valve Academic Research Consortium–combined safety end point.
Resumo:
This subject is reviewed under the following headings: Microbial contamination of raw meat and raw milk; Antibiotic resistance of food-borne pathogens; Antibiotic resistance of commensal and potentially pathogenic bacteria as a new threat in food microbiology; Antibiotic-resistant staphylococci in fermented meat and [in] milk products; Antibiotic-resistant Enterococcus sp. in fermented meat and [in] milk products; Enterococci in farm animals and meat; Enterococci in fermented food; Molecular characterization of resistance of food-borne enterococci; and Further ecological and epidemiological considerations of resistant live bacteria in food. It is concluded that further research is needed, particularly into the possible transfer of the resistance of bacteria consumed in meat or milk products to the indigenous bacteria of the human consumer.
Resumo:
We analyse the access to different institutional pathways to higher education for second-generation students, focusing on youths that hold a higher-education entrance certificate. The alternative vocational pathway appears to compensate to some degree, compared to the traditional academic one, for North-African and Southern-European youths in France, those from Turkey in Germany, and to a lesser degree those from Portugal, Turkey, Ex-Yugoslavia, Albania/Kosovo in Switzerland. This is not the case in Switzerland for Western-European, Italian, and Spanish youths who indeed access higher education via the academic pathway more often than Swiss youths. Using youth panel and survey data, multinomial models are applied to analyse these pathway choices.