5 resultados para Ribonucleotide Reductases
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The sequences of rat testis carbonyl reductase (rCR1) and rat ovary carbonyl reductase (rCR2) are 98% identical, differing only at amino acids 140, 141, 143, 235 and 238. Despite such strong sequence identity, we find that rCR1 and rCR2 have different catalytic constants for metabolism of menadione and 4-benzoyl-pyridine. Compared to rCR1, rCR2 has a 20-fold lower K(m) and 5-fold lower k(cat) towards menadione and a 7-fold lower K(m) and 7-fold lower k(cat) towards 4-benzoyl-pyridine. We constructed hybrids of rCR1 and rCR2 that were changed at either residues 140, 141 and 143 or residues 235 and 238. rCR1 with residues 140, 141 and 143 of rCR2 has similar catalytic efficiency for menadione and 4-benzoyl-pyridine as rCR1. rCR1 with Thr-235 and Glu-238 of rCR2 has the catalytic constants of rCR2, indicating that it is this part of rCR2 that contributes to its lower K(m) for menadione and 4-benzoyl-pyridine. Comparisons of three-dimensional models of rCR1 and rCR2 show how Thr-235 and Glu-238 stabilize rCR2 binding of NADPH and menadione.
Resumo:
The mammalian glycinamide ribonucleotide formyltransferase (GART) genes encode a trifunctional polypeptide involved in the de novo purine biosynthesis. We isolated a bacterial artificial chromosome (BAC) clone containing the bovine GART gene and determined the complete DNA sequence of the BAC clone. Cloning and characterization of the bovine GART gene revealed that the bovine gene consists of 23 exons spanning approximately 27 kb. RT-PCR amplification of bovine GART in different organs showed the expression of two GART transcripts in cattle similar to human and mouse. The GART transcripts encode two proteins of 1010 and 433 amino acids, respectively. Eleven single nucleotide polymorphisms (SNPs) were detected in a mutation scan of 24 unrelated animals of three different cattle breeds, including one SNP that affects the amino acid sequence of GART. The chromosomal localization of the gene was determined by fluorescence in situ hybridization. Comparative genome analysis between cattle, human and mouse indicates that the chromosomal location of the bovine GART gene is in agreement with a previously published mapping report.
Resumo:
REV3, the catalytic subunit of translesion polymerase zeta (polζ), is commonly associated with DNA damage bypass and repair. Despite sharing accessory subunits with replicative polymerase δ, very little is known about the role of polζ in DNA replication. We previously demonstrated that inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. To reveal determinants of this sensitivity and obtain insights into the cellular function of REV3, we performed whole human genome RNAi library screens aimed at identification of synthetic lethal interactions with REV3 in A549 lung cancer cells. The top confirmed hit was RRM1, the large subunit of ribonucleotide reductase (RNR), a critical enzyme of de novo nucleotide synthesis. Treatment with the RNR-inhibitor hydroxyurea (HU) synergistically increased the fraction of REV3-deficient cells containing single stranded DNA (ssDNA) as indicated by an increase in replication protein A (RPA). However, this increase was not accompanied by accumulation of the DNA damage marker γH2AX suggesting a role of REV3 in counteracting HU-induced replication stress (RS). Consistent with a role of REV3 in DNA replication, increased RPA staining was confined to HU-treated S-phase cells. Additionally, we found genes related to RS to be significantly enriched among the top hits of the synthetic sickness/lethality (SSL) screen further corroborating the importance of REV3 for DNA replication under conditions of RS.
Resumo:
Adenosine 5′-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5′-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minorand Arabidopsis thaliana were overexpressed inEscherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a 4Fe-4S cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, Mössbauer spectra of 57Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic 4Fe-4S2+ cluster. This cluster was unusual because only three of the iron sites exhibited the same Mössbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5′-phosphosulfate reductase with a 4Fe-4S center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5′-phosphosulfate reductases found in sulfate reducing bacteria.
Resumo:
The enzyme catalysing the reduction of adenosine 5′-phosphosulfate (AdoPS) to sulfite in higher plants, AdoPS reductase, is considered to be the key enzyme of assimilatory sulfate reduction. In order to address its reaction mechanism, the APR2 isoform of this enzyme from Arabidopsis thaliana was overexpressed in Escherichia coli and purified to homogeneity. Incubation of the enzyme with [35S]AdoPS at 4 °C resulted in radioactive labelling of the protein. Analysis of APR2 tryptic peptides revealed 35SO2–3 bound to Cys248, the only Cys conserved between AdoPS and prokaryotic phosphoadenosine 5′-phosphosulfate reductases. Consistent with this result, radioactivity could be released from the protein by incubation with thiols, inorganic sulfide and sulfite. The intermediate remained stable, however, after incubation with sulfate, oxidized glutathione or AdoPS. Because truncated APR2, missing the thioredoxin-like C-terminal part, could be labelled even at 37 °C, and because this intermediate was more stable than the complete protein, we conclude that the thioredoxin-like domain was required to release the bound SO2–3 from the intermediate. Taken together, these results demonstrate for the first time the binding of 35SO2–3 from [35S]AdoPS to AdoPS reductase and its subsequent release, and thus contribute to our understanding of the molecular mechanism of AdoPS reduction in plants.