36 resultados para Reward (Theology)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decision making based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity in 10 healthy volunteers. In addition to blood-oxygen-level-dependent (BOLD) contrast we assessed the effect of dopaminergic depletion on prolactin response, peripheral markers for dopamine and norepinephrine. In the placebo condition we found increased activation in the left caudate and left cingulate gyrus during anticipation of reward. In the α-methylparatyrosine condition there was no significant brain activation during anticipation of reward or loss. In α-methylparatyrosine, anticipation of reward vs. loss increased activation in the right insula, left frontal, right parietal cortices and right cingulate gyrus. Comparing placebo versus α-methylparatyrosine showed increased activation in the left cingulate gyrus during anticipation of reward and the left medial frontal gyrus during anticipation of loss. α-methylparatyrosine reduced levels of dopamine in urine and homovanillic acid in plasma and increased prolactin. No significant effect of α-methylparatyrosine was found on norepinephrine markers. Our findings implicate distinct patterns of BOLD underlying reward processing following dopamine depletion, suggesting a role of dopaminergic neurotransmission for anticipation of monetary reward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT-but not in placebo-condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN.