85 resultados para Reconstruction of fase space and correlation dimension
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Refinement in microvascular reconstructive techniques over the last 30 years has enabled an increasing number of patients to be rehabilitated for both functional and aesthetic reasons. The purpose of this study was to evaluate different microsurgical practice, including perioperative management, in Germany, Austria, and Switzerland. The DÖSAK collaborative group for Microsurgical Reconstruction developed a detailed questionnaire which was circulated to units in the three countries. The current practice of the departments was evaluated. Thirty-eight questionnaires were completed resulting in a 47.5% response rate. A considerable variation in the number of microsurgical reconstructions per year was noted. In relation to the timing of bony reconstruction, 10 hospitals did reconstructions primarily (26.3%), 19 secondarily (50%) and 9 (23.7%) hospitals used both concepts. In the postoperative course, 15.8% of hospitals use inhibitors of platelet aggregation, most hospitals use low molecular heparin (52.6%) or other heparin products (44.7%). This survey shows variation in the performance, management, and care of microsurgical reconstructions of patients. This is due in part to the microvascular surgeons available in the unit but it is also due to different types of hospitals where various types of care can be performed in these patients needing special perioperative care.
Resumo:
Reconstruction of the anterior skull base and fronto-orbital framework following extensive tumor resection is both challenging and controversial. Dural defects are covered with multiple sheets of fascia lata that provide sufficient support and avoid herniation. Plating along the skull base is contraindicated. After resection of orbital walls, grafting is necessary if the periosteum or parts of the periorbital tissue had to be removed, to avoid enophthalmus or strabism. Free bone grafts exposed to the sinonasal or pharyngeal cavity are vulnerable to infection or necrosis: therefore, covering the grafts with vascularized tissue, such as the Bichat fat-pad or pedicled temporalis flaps, should reduce these complications. Alloplastic materials are indispensable in cranial defects, whereas microsurgical free tissue transfer is indicated in cases of orbital exenteration and skin defects. The authors review their experience and follow-up of 122 skull base reconstructions following extensive subcranial tumor resection. Most significant complications were pneumocranium in 4.9%, CSF leaks in 3.2%, and partial bone resorption in 8.1%.
Resumo:
Radiocarbon production, solar activity, total solar irradiance (TSI) and solar-induced climate change are reconstructed for the Holocene (10 to 0 kyr BP), and TSI is predicted for the next centuries. The IntCal09/SHCal04 radiocarbon and ice core CO2 records, reconstructions of the geomagnetic dipole, and instrumental data of solar activity are applied in the Bern3D-LPJ, a fully featured Earth system model of intermediate complexity including a 3-D dynamic ocean, ocean sediments, and a dynamic vegetation model, and in formulations linking radiocarbon production, the solar modulation potential, and TSI. Uncertainties are assessed using Monte Carlo simulations and bounding scenarios. Transient climate simulations span the past 21 thousand years, thereby considering the time lags and uncertainties associated with the last glacial termination. Our carbon-cycle-based modern estimate of radiocarbon production of 1.7 atoms cm−2 s−1 is lower than previously reported for the cosmogenic nuclide production model by Masarik and Beer (2009) and is more in-line with Kovaltsov et al. (2012). In contrast to earlier studies, periods of high solar activity were quite common not only in recent millennia, but throughout the Holocene. Notable deviations compared to earlier reconstructions are also found on decadal to centennial timescales. We show that earlier Holocene reconstructions, not accounting for the interhemispheric gradients in radiocarbon, are biased low. Solar activity is during 28% of the time higher than the modern average (650 MeV), but the absolute values remain weakly constrained due to uncertainties in the normalisation of the solar modulation to instrumental data. A recently published solar activity–TSI relationship yields small changes in Holocene TSI of the order of 1 W m−2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.16 W m−2. Related solar-induced variations in global mean surface air temperature are simulated to be within 0.1 K. Autoregressive modelling suggests a declining trend of solar activity in the 21st century towards average Holocene conditions.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
We study Hausdorff and Minkowski dimension distortion for images of generic affine subspaces of Euclidean space under Sobolev and quasiconformal maps. For a supercritical Sobolev map f defined on a domain in RnRn, we estimate from above the Hausdorff dimension of the set of affine subspaces parallel to a fixed m-dimensional linear subspace, whose image under f has positive HαHα measure for some fixed α>mα>m. As a consequence, we obtain new dimension distortion and absolute continuity statements valid for almost every affine subspace. Our results hold for mappings taking values in arbitrary metric spaces, yet are new even for quasiconformal maps of the plane. We illustrate our results with numerous examples.
Resumo:
To evaluate the use of computer-assisted designed and manufactured (CAD/CAM) orbital wall and floor implants for late reconstruction of extensive orbital fractures.
Resumo:
The most widely accepted treatment for comminuted fractures of the radial head is either the excision or open reduction and internal fixation. The purpose of the present study is to evaluate the value of an 'on-table' reconstruction technique in severely comminuted fractures of the radial head. In this study, two patients with a Mason type-III and four patients with a Mason type-IV radial-head fracture were treated with 'on-table' reconstruction and fixation using low-profile mini-plates. After a mean follow-up of 112 months (47-154 months), the mean elbow motion was 0-6-141 degrees extension flexion with 79 degrees of pronation and 70 degrees of supination. The mean Broberg and Morrey functional rating score was 97.0 points, the Mayo Elbow Performance Index was 99.2 points and the mean Disabilities of the Arm, Shoulder, and Hand (DASH) Outcome Measure score was 1.94 points. One patient had symptoms of degenerative changes, with a slight joint-space narrowing. There were no radiographic signs of devitalisation at final examination. Comminuted fractures of the radial head, which would otherwise require excision, can be successfully treated with an 'on-table' reconstruction technique.
Resumo:
For crime scene investigation in cases of homicide, the pattern of bloodstains at the incident site is of critical importance. The morphology of the bloodstain pattern serves to determine the approximate blood source locations, the minimum number of blows and the positioning of the victim. In the present work, the benefits of the three-dimensional bloodstain pattern analysis, including the ballistic approximation of the trajectories of the blood drops, will be demonstrated using two illustrative cases. The crime scenes were documented in 3D, using the non-contact methods digital photogrammetry, tachymetry and laser scanning. Accurate, true-to-scale 3D models of the crime scenes, including the bloodstain pattern and the traces, were created. For the determination of the areas of origin of the bloodstain pattern, the trajectories of up to 200 well-defined bloodstains were analysed in CAD and photogrammetry software. The ballistic determination of the trajectories was performed using ballistics software. The advantages of this method are the short preparation time on site, the non-contact measurement of the bloodstains and the high accuracy of the bloodstain analysis. It should be expected that this method delivers accurate results regarding the number and position of the areas of origin of bloodstains, in particular the vertical component is determined more precisely than using conventional methods. In both cases relevant forensic conclusions regarding the course of events were enabled by the ballistic bloodstain pattern analysis.
Resumo:
We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r(2) ? -0.86) as well as calcium release (r(2) ? -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r(2) = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.
Resumo:
By targeting somatostatin receptors (sst) radiopeptides have been established for both diagnosis and therapy. For physiologically normal human tissues the study provides a normative database of maximum standardized uptake value (SUV(max)) and sst mRNA.
Resumo:
Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.