Frequency of Sobolev and quasiconformal dimension distortion
Data(s) |
01/02/2013
|
---|---|
Resumo |
We study Hausdorff and Minkowski dimension distortion for images of generic affine subspaces of Euclidean space under Sobolev and quasiconformal maps. For a supercritical Sobolev map f defined on a domain in RnRn, we estimate from above the Hausdorff dimension of the set of affine subspaces parallel to a fixed m-dimensional linear subspace, whose image under f has positive HαHα measure for some fixed α>mα>m. As a consequence, we obtain new dimension distortion and absolute continuity statements valid for almost every affine subspace. Our results hold for mappings taking values in arbitrary metric spaces, yet are new even for quasiconformal maps of the plane. We illustrate our results with numerous examples. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/41980/1/sobolev-exceptional.pdf http://boris.unibe.ch/41980/7/jmpa_ger.pdf Balogh, Zoltan M.; Monti, Roberto; Tyson, Jeremy T. (2013). Frequency of Sobolev and quasiconformal dimension distortion. Journal de mathématiques pures et appliquées, 99(2), pp. 125-149. Gauthier-Villars 10.1016/j.matpur.2012.06.005 <http://dx.doi.org/10.1016/j.matpur.2012.06.005> doi:10.7892/boris.41980 info:doi:10.1016/j.matpur.2012.06.005 urn:issn:0021-7824 |
Idioma(s) |
eng |
Publicador |
Gauthier-Villars |
Relação |
http://boris.unibe.ch/41980/ |
Direitos |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/openAccess |
Fonte |
Balogh, Zoltan M.; Monti, Roberto; Tyson, Jeremy T. (2013). Frequency of Sobolev and quasiconformal dimension distortion. Journal de mathématiques pures et appliquées, 99(2), pp. 125-149. Gauthier-Villars 10.1016/j.matpur.2012.06.005 <http://dx.doi.org/10.1016/j.matpur.2012.06.005> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |