Frequency of Sobolev and quasiconformal dimension distortion


Autoria(s): Balogh, Zoltan M.; Monti, Roberto; Tyson, Jeremy T.
Data(s)

01/02/2013

Resumo

We study Hausdorff and Minkowski dimension distortion for images of generic affine subspaces of Euclidean space under Sobolev and quasiconformal maps. For a supercritical Sobolev map f defined on a domain in RnRn, we estimate from above the Hausdorff dimension of the set of affine subspaces parallel to a fixed m-dimensional linear subspace, whose image under f has positive HαHα measure for some fixed α>mα>m. As a consequence, we obtain new dimension distortion and absolute continuity statements valid for almost every affine subspace. Our results hold for mappings taking values in arbitrary metric spaces, yet are new even for quasiconformal maps of the plane. We illustrate our results with numerous examples.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/41980/1/sobolev-exceptional.pdf

http://boris.unibe.ch/41980/7/jmpa_ger.pdf

Balogh, Zoltan M.; Monti, Roberto; Tyson, Jeremy T. (2013). Frequency of Sobolev and quasiconformal dimension distortion. Journal de mathématiques pures et appliquées, 99(2), pp. 125-149. Gauthier-Villars 10.1016/j.matpur.2012.06.005 <http://dx.doi.org/10.1016/j.matpur.2012.06.005>

doi:10.7892/boris.41980

info:doi:10.1016/j.matpur.2012.06.005

urn:issn:0021-7824

Idioma(s)

eng

Publicador

Gauthier-Villars

Relação

http://boris.unibe.ch/41980/

Direitos

info:eu-repo/semantics/restrictedAccess

info:eu-repo/semantics/openAccess

Fonte

Balogh, Zoltan M.; Monti, Roberto; Tyson, Jeremy T. (2013). Frequency of Sobolev and quasiconformal dimension distortion. Journal de mathématiques pures et appliquées, 99(2), pp. 125-149. Gauthier-Villars 10.1016/j.matpur.2012.06.005 <http://dx.doi.org/10.1016/j.matpur.2012.06.005>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed