18 resultados para R-Statistical computing

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With improvements in acquisition speed and quality, the amount of medical image data to be screened by clinicians is starting to become challenging in the daily clinical practice. To quickly visualize and find abnormalities in medical images, we propose a new method combining segmentation algorithms with statistical shape models. A statistical shape model built from a healthy population will have a close fit in healthy regions. The model will however not fit to morphological abnormalities often present in the areas of pathologies. Using the residual fitting error of the statistical shape model, pathologies can be visualized very quickly. This idea is applied to finding drusen in the retinal pigment epithelium (RPE) of optical coherence tomography (OCT) volumes. A segmentation technique able to accurately segment drusen in patients with age-related macular degeneration (AMD) is applied. The segmentation is then analyzed with a statistical shape model to visualize potentially pathological areas. An extensive evaluation is performed to validate the segmentation algorithm, as well as the quality and sensitivity of the hinting system. Most of the drusen with a height of 85.5 microm were detected, and all drusen at least 93.6 microm high were detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Methods. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. Results. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7mmHgand-0.9+/- 0.5mmHg, respectively), withameanpulsepressureof3.4mmHg.ThedifferencebetweenthemeanCVPandCVPatend-diastoleduringexpirationwas0.58+/- 0.81 mmHg. Conclusions. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a framework for statistical finite element analysis combining shape and material properties, and allowing performing statistical statements of biomechanical performance across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position and intensity between them. A statistical model of shape and intensity (bone density) is computed by means of principal component analysis. Afterwards, finite element analysis (FEA) is performed to analyse the biomechanical performance of the bones. Realistic forces are applied on the bones and the resulting displacement and bone stress distribution are calculated. The mechanical behaviour of different PCA bone instances is compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density spatial and temporal sampling of EEG data enhances the quality of results of electrophysiological experiments. Because EEG sources typically produce widespread electric fields (see Chapter 3) and operate at frequencies well below the sampling rate, increasing the number of electrodes and time samples will not necessarily increase the number of observed processes, but mainly increase the accuracy of the representation of these processes. This is namely the case when inverse solutions are computed. As a consequence, increasing the sampling in space and time increases the redundancy of the data (in space, because electrodes are correlated due to volume conduction, and time, because neighboring time points are correlated), while the degrees of freedom of the data change only little. This has to be taken into account when statistical inferences are to be made from the data. However, in many ERP studies, the intrinsic correlation structure of the data has been disregarded. Often, some electrodes or groups of electrodes are a priori selected as the analysis entity and considered as repeated (within subject) measures that are analyzed using standard univariate statistics. The increased spatial resolution obtained with more electrodes is thus poorly represented by the resulting statistics. In addition, the assumptions made (e.g. in terms of what constitutes a repeated measure) are not supported by what we know about the properties of EEG data. From the point of view of physics (see Chapter 3), the natural “atomic” analysis entity of EEG and ERP data is the scalp electric field

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The coping resources questionnaire for back pain (FBR) uses 12 items to measure the perceived helpfulness of different coping resources (CRs, social emotional support, practical help, knowledge, movement and relaxation, leisure and pleasure, spirituality and cognitive strategies). The aim of the study was to evaluate the instrument in a clinical patient sample assessed in a primary care setting. SAMPLE AND METHODS The study was a secondary evaluation of empirical data from a large cohort study in general practices. The 58 participating primary care practices recruited patients who reported chronic back pain in the consultation. Besides the FBR and a pain sketch, the patients completed scales measuring depression, anxiety, resilience, sociodemographic factors and pain characteristics. To allow computing of retested parameters the FBR was sent to some of the original participants again after 6 months (90% response rate). We calculated consistency and retest reliability coefficients as well as correlations between the FBR subscales and depression, anxiety and resilience scores to account for validity. By means of a cluster analysis groups with different resource profiles were formed. Results. RESULTS For the study 609 complete FBR baseline data sets could be used for statistical analysis. The internal consistency scores ranged fromα=0.58 to α=0.78 and retest reliability scores were between rTT=0.41 and rTT=0.63. Correlation with depression, fear and resilience ranged from r=-0.38 to r=0.42. The cluster analysis resulted in four groups with relatively homogenous intragroup profiles (high CRs, low spirituality, medium CRs, low CRs). The four groups differed significantly in fear and depression (the more inefficient the resources the higher the difference) as well as in resilience (the more inefficient the lower the difference). The group with low CRs also reported permanent pain with no relief. The groups did not otherwise differ. CONCLUSIONS The FBR is an economic instrument that is suitable for practical use e.g. in primary care practices to identify strengths and deficits in the CRs of chronic pain patients that can then be specified in face to face consultation. However, due to the rather low reliability, the use of subscales for profile differentiation and follow-up measurement in individual diagnoses is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES In dental research multiple site observations within patients or taken at various time intervals are commonplace. These clustered observations are not independent; statistical analysis should be amended accordingly. This study aimed to assess whether adjustment for clustering effects during statistical analysis was undertaken in five specialty dental journals. METHODS Thirty recent consecutive issues of Orthodontics (OJ), Periodontology (PJ), Endodontology (EJ), Maxillofacial (MJ) and Paediatric Dentristry (PDJ) journals were hand searched. Articles requiring adjustment accounting for clustering effects were identified and statistical techniques used were scrutinized. RESULTS Of 559 studies considered to have inherent clustering effects, adjustment for this was made in the statistical analysis in 223 (39.1%). Studies published in the Periodontology specialty accounted for clustering effects in the statistical analysis more often than articles published in other journals (OJ vs. PJ: OR=0.21, 95% CI: 0.12, 0.37, p<0.001; MJ vs. PJ: OR=0.02, 95% CI: 0.00, 0.07, p<0.001; PDJ vs. PJ: OR=0.14, 95% CI: 0.07, 0.28, p<0.001; EJ vs. PJ: OR=0.11, 95% CI: 0.06, 0.22, p<0.001). A positive correlation was found between increasing prevalence of clustering effects in individual specialty journals and correct statistical handling of clustering (r=0.89). CONCLUSIONS The majority of studies in 5 dental specialty journals (60.9%) examined failed to account for clustering effects in statistical analysis where indicated, raising the possibility of inappropriate decreases in p-values and the risk of inappropriate inferences.