5 resultados para Pulse width modulation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The synthesis of a photolabile derivative of inositol-1,4,5-trisphosphate (IP3) is described. This new caged second messenger (6-ortho-nitroveratryl)-IP3 (6-NV-IP3) has an extinction coefficient of 5000 M(-1) cm(-1) at 350 nm, and a quantum yield of photolysis of 0.12. Therefore, 6-NV-IP3 is photolyzed with UV light about three times more efficiently than the widely used P(4(5))-1-(2-nitrophenyl)ethyl-caged IP3 (NPE-IP3). 6-NV-IP3 has a two-photon cross-section of about 0.035 GM at 730 nm. This absorbance is sufficiently large for effective two-photon excitation in living cells at modest power levels. Using near-IR light (5 mW, 710 nm, 80 MHz, pulse-width 70 fs), we produced focal bursts of IP3 in HeLa cells, as revealed by laser-scanning confocal imaging of intracellular Ca2+ concentrations. Therefore, 6-NV-IP3 can be used for efficient, subcellular photorelease of IP3, not only in cultured cells but also, potentially, in vivo. It is in the latter situation that two-photon photolysis should reveal its true forte.
Resumo:
OBJECTIVES This study was conducted to determine if an additional procedural endpoint of unexcitability (UE) to pacing along the ablation line reduces recurrence of atrial fibrillation (AF) or atrial tachycardia (AT) after radiofrequency catheter ablation. BACKGROUND AF/AT recurrence is common after pulmonary vein isolation (PVI). METHODS We included 102 patients from 2 centers (age 63 ± 10 years; 33 women; left atrium 38 ± 7 mm; left ventricular ejection fraction 61 ± 6%) with symptomatic paroxysmal AF. A 3-dimensional mapping system and circumferential mapping catheter were used in all patients for PVI. In group 1 (n = 50), the procedural endpoint was bidirectional block across the ablation line. In group 2 (n = 52), additional UE to bipolar pacing at an output of 10 mA and 2-ms pulse width was required. The primary endpoint was freedom from any AF/AT (>30 s) after discontinuation of antiarrhythmic drugs. RESULTS Procedural endpoints were successfully achieved in all patients. Procedure duration was significantly longer in group 2 (185 ± 58 min vs. 139 ± 57 min; p < 0.001); however, fluoroscopy times were not different (23 ± 9 min vs. 23 ± 9 min; p = 0.49). After a follow-up of 12 months in all patients, 26 patients (52%) in group 1 versus 43 (82.7%) in group 2 were free from any AF/AT (p = 0.001) after a single procedure. No major complications occurred. CONCLUSIONS The use of pacing to ensure UE along the PVI line markedly improved near-term single-procedure success, compared with demonstration of bidirectional block alone. This additional endpoint significantly improved patient outcomes after PVI. (Unexcitability Along the Ablation as an Endpoint for Atrial Fibrillation Ablation; NCT01724437).
Resumo:
The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency’s Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury’s surface.
Resumo:
The intensity of long-range correlations observed with the classical HMBC pulse sequence using static optimization of the long-range coupling delay is directly related to the size of the coupling constant and is often set as a compromise. As such, some long-range correlations might appear with a reduced intensity or might even be completely absent from the spectra. After a short introduction, this third manuscript will give a detailed review of some selected HMBC variants dedicated to improve the detection of long-range correlations, such as the ACCORD-HMBC, CIGAR-HMBC, and Broadband HMBC experiments. Practical details about the accordion optimization, which affords a substantial improvement in both the number and intensity of the long-range correlations observed, but introduces a modulation in F1, will be discussed. The incorporation of the so-called constant time variable delay in the CIGAR-HMBC experiment, which can trigger or even completely suppress 1H–1H coupling modulation inherent to the utilization of the accordion principle, will be also discussed. The broadband HMBC scheme, which consists of recording a series of HMBC spectra with different delays set as a function of the long-range heteronuclear coupling constant ranges and transverse relaxation times T2, is also examined.
Resumo:
Understanding nuclear and electronic dynamics of molecular systems has advanced considerably by probing their nonlinear responses with a suitable sequence of pulses. Moreover, the ability to control crucial parameters of the excitation pulses, such as duration, sequence, frequency, polarization, slowly varying envelope, or carrier phase, has led to a variety of advanced time-resolved spectroscopic methodologies. Recently, two-dimensional electronic spectroscopy with ultrashort pulses has become a more and more popular tool since it allows to obtain information on energy and coherence transfer phenomena, line broadening mechanisms, or the presence of quantum coherences in molecular complexes. Here, we present a high fidelity two-dimensional electronic spectroscopy setup designed for molecular systems in solution. It incorporates the versatility of pulse-shaping methods to achieve full control on the amplitude and phase of the individual exciting and probing pulses. Selective and precise amplitude- and phase-modulation is shown and applied to investigate electronic dynamics in several reference molecular systems.