6 resultados para Posteroanterior motion test

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Visuoperceptual deficits in dementia are common and can reduce quality of life. Testing of visuoperceptual function is often confounded by impairments in other cognitive domains and motor dysfunction. We aimed to develop, pilot, and test a novel visuocognitive prototype test battery which addressed these issues, suitable for both clinical and functional imaging use. Methods: We recruited 23 participants (14 with dementia, 6 of whom had extrapyramidal motor features, and 9 age-matched controls). The novel Newcastle visual perception prototype battery (NEVIP-B-Prototype) included angle, color, face, motion and form perception tasks, and an adapted response system. It allows for individualized task difficulties. Participants were tested outside and inside the 3T functional magnetic resonance imaging (fMRI) scanner. Functional magnetic resonance imaging data were analyzed using SPM8. Results: All participants successfully completed the task inside and outside the scanner. Functional magnetic resonance imaging analysis showed activation regions corresponding well to the regional specializations of the visual association cortex. In both groups, there was significant activity in the ventral occipital-temporal region in the face and color tasks, whereas the motion task activated the V5 region. In the control group, the angle task activated the occipitoparietal cortex. Patients and controls showed similar levels of activation, except on the angle task for which occipitoparietal activation was lower in patients than controls. Conclusion: Distinct visuoperceptual functions can be tested in patients with dementia and extrapyramidal motor features when tests use individualized thresholds, adapted tasks, and specialized response systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To test a new tiny-tipped intraoperative diagnostic tool that was designed to provide the surgeon with reliable stiffness data on the motion segment during microdiscectomy. A decrease in stiffness after nuclectomy and a measurable influence of muscle tension were assumed. If the influence of muscle tension on the motion segment could at least be ruled out, there should be no difference with regard to stiffness between women and men. If these criteria are met, this new intraoperative diagnostic tool could be used in further studies for objective decision-making regarding additional stabilization systems after microdiscectomy. METHODS: After evaluation of the influence of muscle relaxation during in vivo measurements with a spinal spreader between the spinous processes, 21 motion segments were investigated in 21 patients. Using a standardized protocol, including quantified muscle relaxation, spinal stiffness was measured before laminotomy and after nuclectomy. RESULTS: The decrease in stiffness after microdiscectomy was highly significant. There were no statistically significant differences between men and women. The average stiffness value before discectomy was 33.7 N/mm, and it decreased to 25.6 N/mm after discectomy. The average decrease in stiffness was 8.1 N/mm (24%). CONCLUSION: In the moderately degenerated spine, stiffness decreases significantly after microdiscectomy. Control for muscle relaxation is essential when measuring in vivo spinal stiffness. The new spinal spreader was found to provide reliable data. This spreader could be used in further studies for objective decision-making about additional stabilization systems after microdiscectomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION An accurate description of the biomechanical behavior of the spine is crucial for the planning of scoliotic surgical correction as well as for the understanding of degenerative spine disorders. The current clinical assessments of spinal mechanics such as side-bending or fulcrum-bending tests rely on the displacement of the spine observed during motion of the patient. Since these tests focused solely on the spinal kinematics without considering mechanical loads, no quantification of the mechanical flexibility of the spine can be provided. METHODS A spinal suspension test (SST) has been developed to simultaneously monitor the force applied on the spine and the induced vertebral displacements. The system relies on cervical elevation of the patient and orthogonal radiographic images are used to measure the position of the vertebras. The system has been used to quantify the spinal flexibility on five AIS patients. RESULTS Based on the SST, the overall spinal flexibility varied between 0.3 °/Nm for the patient with the stiffer curve and 2 °/Nm for the less rigid curve. A linear correlation was observed between the overall spinal flexibility and the change in Cobb angle. In addition, the segmental flexibility calculated for five segments around the apex was 0.13 ± 0.07 °/Nm, which is similar to intra-operative stiffness measurements previously published. CONCLUSIONS In summary, the SST seems suitable to provide pre-operative information on the complex functional behavior and stiffness of spinal segments under physiological loading conditions. Such tools will become increasingly important in the future due to the ever-increasing complexity of the surgical instrumentation and procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To systematically evaluate the dependence of intravoxel-incoherent-motion (IVIM) parameters on the b-value threshold separating the perfusion and diffusion compartment, and to implement and test an algorithm for the standardized computation of this threshold. METHODS Diffusion weighted images of the upper abdomen were acquired at 3 Tesla in eleven healthy male volunteers with 10 different b-values and in two healthy male volunteers with 16 different b-values. Region-of-interest IVIM analysis was applied to the abdominal organs and skeletal muscle with a systematic increase of the b-value threshold for computing pseudodiffusion D*, perfusion fraction Fp , diffusion coefficient D, and the sum of squared residuals to the bi-exponential IVIM-fit. RESULTS IVIM parameters strongly depended on the choice of the b-value threshold. The proposed algorithm successfully provided optimal b-value thresholds with the smallest residuals for all evaluated organs [s/mm2]: e.g., right liver lobe 20, spleen 20, right renal cortex 150, skeletal muscle 150. Mean D* [10(-3) mm(2) /s], Fp [%], and D [10(-3) mm(2) /s] values (±standard deviation) were: right liver lobe, 88.7 ± 42.5, 22.6 ± 7.4, 0.73 ± 0.12; right renal cortex: 11.5 ± 1.8, 18.3 ± 2.9, 1.68 ± 0.05; spleen: 41.9 ± 57.9, 8.2 ± 3.4, 0.69 ± 0.07; skeletal muscle: 21.7 ± 19.0; 7.4 ± 3.0; 1.36 ± 0.04. CONCLUSION IVIM parameters strongly depend upon the choice of the b-value threshold used for computation. The proposed algorithm may be used as a robust approach for IVIM analysis without organ-specific adaptation. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain lesions in the visual associative cortex are known to impair visual perception, i.e., the capacity to correctly perceive different aspects of the visual world, such as motion, color, or shapes. Visual perception can be influenced by non-invasive brain stimulation such as transcranial direct current stimulation (tDCS). In a recently developed technique called high definition (HD) tDCS, small HD-electrodes are used instead of the sponge electrodes in the conventional approach. This is believed to achieve high focality and precision over the target area. In this paper we tested the effects of cathodal and anodal HD-tDCS over the right V5 on motion and shape perception in a single blind, within-subject, sham controlled, cross-over trial. The purpose of the study was to prove the high focality of the stimulation only over the target area. Twenty one healthy volunteers received 20 min of 2 mA cathodal, anodal and sham stimulation over the right V5 and their performance on a visual test was recorded. The results showed significant improvement in motion perception in the left hemifield after cathodal HD-tDCS, but not in shape perception. Sham and anodal HD-tDCS did not affect performance. The specific effect of influencing performance of visual tasks by modulating the excitability of the neurons in the visual cortex might be explained by the complexity of perceptual information needed for the tasks. This provokes a "noisy" activation state of the encoding neuronal patterns. We speculate that in this case cathodal HD-tDCS may focus the correct perception by decreasing global excitation and thus diminishing the "noise" below threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Residual acetabular dysplasia is seen in combination with femoral pathomorphologies including an aspherical femoral head and valgus neck-shaft angle with high antetorsion. It is unclear how these femoral pathomorphologies affect range of motion (ROM) and impingement zones after periacetabular osteotomy. QUESTIONS/PURPOSES (1) Does periacetabular osteotomy (PAO) restore the typically excessive ROM in dysplastic hips compared with normal hips; (2) how do impingement locations differ in dysplastic hips before and after PAO compared with normal hips; (3) does a concomitant cam-type morphology adversely affect internal rotation; and (4) does a concomitant varus-derotation intertrochanteric osteotomy (IO) affect external rotation? METHODS Between January 1999 and March 2002, we performed 200 PAOs for dysplasia; of those, 27 hips (14%) met prespecified study inclusion criteria, including availability of a pre- and postoperative CT scan that included the hip and the distal femur. In general, we obtained those scans to evaluate the pre- and postoperative acetabular and femoral morphology, the degree of acetabular reorientation, and healing of the osteotomies. Three-dimensional surface models based on CT scans of 27 hips before and after PAO and 19 normal hips were created. Normal hips were obtained from a population of CT-based computer-assisted THAs using the contralateral hip after exclusion of symptomatic hips or hips with abnormal radiographic anatomy. Using validated and computerized methods, we then determined ROM (flexion/extension, internal- [IR]/external rotation [ER], adduction/abduction) and two motion patterns including the anterior (IR in flexion) and posterior (ER in extension) impingement tests. The computed impingement locations were assigned to anatomical locations of the pelvis and the femur. ROM was calculated separately for hips with (n = 13) and without (n = 14) a cam-type morphology and PAOs with (n = 9) and without (n = 18) a concomitant IO. A post hoc power analysis based on the primary research question with an alpha of 0.05 and a beta error of 0.20 revealed a minimal detectable difference of 4.6° of flexion. RESULTS After PAO, flexion, IR, and adduction/abduction did not differ from the nondysplastic control hips with the numbers available (p ranging from 0.061 to 0.867). Extension was decreased (19° ± 15°; range, -18° to 30° versus 28° ± 3°; range, 19°-30°; p = 0.017) and ER in 0° flexion was increased (25° ± 18°; range, -10° to 41° versus 38° ± 7°; range, 17°-41°; p = 0.002). Dysplastic hips had a higher prevalence of extraarticular impingement at the anteroinferior iliac spine compared with normal hips (48% [13 of 27 hips] versus 5% [one of 19 hips], p = 0.002). A PAO increased the prevalence of impingement for the femoral head from 30% (eight of 27 hips) preoperatively to 59% (16 of 27 hips) postoperatively (p = 0.027). IR in flexion was decreased in hips with a cam-type deformity compared with those with a spherical femoral head (p values from 0.002 to 0.047 for 95°-120° of flexion). A concomitant IO led to a normalization of ER in extension (eg, 37° ± 7° [range, 21°-41°] of ER in 0° of flexion in hips with concomitant IO compared with 38° ± 7° [range, 17°-41°] in nondysplastic control hips; p = 0.777). CONCLUSIONS Using computer simulation of hip ROM, we could show that the PAO has the potential to restore the typically excessive ROM in dysplastic hips. However, a PAO can increase the prevalence of secondary intraarticular impingement of the aspherical femoral head and extraarticular impingement of the anteroinferior iliac spines in flexion and internal rotation. A cam-type morphology can result in anterior impingement with restriction of IR. Additionally, a valgus hip with high antetorsion can result in posterior impingement with decreased ER in extension, which can be normalized with a varus derotation IO of the femur. However, indication of an additional IO needs to be weighed against its inherent morbidity and possible complications. The results are based on a limited number of hips with a pre- and postoperative CT scan after PAO. Future prospective studies are needed to verify the current results based on computer simulation and to test their clinical importance.