3 resultados para Portable devices

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The widespread deployment of wireless mobile communications enables an almost permanent usage of portable devices, which imposes high demands on the battery of these devices. Indeed, battery lifetime is becoming one the most critical factors on the end-users satisfaction when using wireless communications. In this work, the optimized power save algorithm for continuous media applications (OPAMA) is proposed, aiming at enhancing the energy efficiency on end-users devices. By combining the application specific requirements with data aggregation techniques, {OPAMA} improves the standard {IEEE} 802.11 legacy Power Save Mode (PSM) performance. The algorithm uses the feedback on the end-user expected quality to establish a proper tradeoff between energy consumption and application performance. {OPAMA} was assessed in the OMNeT++ simulator, using real traces of variable bitrate video streaming applications, and in a real testbed employing a novel methodology intended to perform an accurate evaluation concerning video Quality of Experience (QoE) perceived by the end-users. The results revealed the {OPAMA} capability to enhance energy efficiency without degrading the end-user observed QoE, achieving savings up to 44 when compared with the {IEEE} 802.11 legacy PSM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last decade wireless mobile communications have progressively become part of the people’s daily lives, leading users to expect to be “alwaysbest-connected” to the Internet, regardless of their location or time of day. This is indeed motivated by the fact that wireless access networks are increasingly ubiquitous, through different types of service providers, together with an outburst of thoroughly portable devices, namely laptops, tablets, mobile phones, among others. The “anytime and anywhere” connectivity criterion raises new challenges regarding the devices’ battery lifetime management, as energy becomes the most noteworthy restriction of the end-users’ satisfaction. This wireless access context has also stimulated the development of novel multimedia applications with high network demands, although lacking in energy-aware design. Therefore, the relationship between energy consumption and the quality of the multimedia applications perceived by end-users should be carefully investigated. This dissertation addresses energy-efficient multimedia communications in the IEEE 802.11 standard, which is the most widely used wireless access technology. It advances the literature by proposing a unique empirical assessment methodology and new power-saving algorithms, always bearing in mind the end-users’ feedback and evaluating quality perception. The new EViTEQ framework proposed in this thesis, for measuring video transmission quality and energy consumption simultaneously, in an integrated way, reveals the importance of having an empirical and high-accuracy methodology to assess the trade-off between quality and energy consumption, raised by the new end-users’ requirements. Extensive evaluations conducted with the EViTEQ framework revealed its flexibility and capability to accurately report both video transmission quality and energy consumption, as well as to be employed in rigorous investigations of network interface energy consumption patterns, regardless of the wireless access technology. Following the need to enhance the trade-off between energy consumption and application quality, this thesis proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA). By using the end-users’ feedback to establish a proper trade-off between energy consumption and application performance, OPAMA aims at enhancing the energy efficiency of end-users’ devices accessing the network through IEEE 802.11. OPAMA performance has been thoroughly analyzed within different scenarios and application types, including a simulation study and a real deployment in an Android testbed. When compared with the most popular standard power-saving mechanisms defined in the IEEE 802.11 standard, the obtained results revealed OPAMA’s capability to enhance energy efficiency, while keeping end-users’ Quality of Experience within the defined bounds. Furthermore, OPAMA was optimized to enable superior energy savings in multiple station environments, resulting in a new proposal called Enhanced Power Saving Mechanism for Multiple station Environments (OPAMA-EPS4ME). The results of this thesis highlight the relevance of having a highly accurate methodology to assess energy consumption and application quality when aiming to optimize the trade-off between energy and quality. Additionally, the obtained results based both on simulation and testbed evaluations, show clear benefits from employing userdriven power-saving techniques, such as OPAMA, instead of IEEE 802.11 standard power-saving approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ventricular assist devices (VADs) and total artificial hearts have been in development for the last 50 years. Since their inception, simulators of the circulation with different degrees of complexity have been produced to test these devices in vitro. Currently, a new path has been taken with the extensive efforts to develop paediatric VADs, which require totally different design constraints. This paper presents the manufacturing details of an economical simulator of the systemic paediatric circulation. This simulator allows the insertion of a paediatric VAD, includes a pumping ventricle, and is adjustable within the paediatric range. Rather than focusing on complexity and physiological simulation, this simulator is designed to be simple and practical for rapid device testing. The simulator was instrumented with medical sensors and data were acquired under different conditions with and without the new PediaFlowTM paediatric VAD. The VAD was run at different impeller speeds while simulator settings such as vascular resistance and stroke volume were varied. The hydraulic performance of the VAD under pulsatile conditions could be characterized and the magnetic suspension could be tested via manipulations such as cannula clamping. This compact mock loop has proven to be valuable throughout the PediaFlow development process and has the advantage that it is uncomplicated and can be manufactured cheaply. It can be produced by several research groups and the results of different VADs can then be compared easily.