42 resultados para Polymeric Scaffolds
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We investigated the inflammatory response to, and the osteoinductive efficacies of, four polymers (collagen, Ethisorb, PLGA and Polyactive) that bore either an adsorbed (fast-release kinetics) or a calcium-phosphate-coating-incorporated (slow-release kinetics) depot of BMP-2. Titanium-plate-supported discs of each polymer (n = 6 per group) were implanted at an ectopic (subcutaneous) ossification site in rats (n = 48). Five weeks later, they were retrieved for a histomorphometric analysis of the volumes of ectopic bone and foreign-body giant cells (a gauge of inflammatory reactivity), and the degree of polymer degradation. For each polymer, the osteoinductive efficacy of BMP-2 was higher when it was incorporated into a coating than when it was directly adsorbed onto the material. This mode of BMP-2 carriage was consistently associated with an attenuation of the inflammatory response. For coated materials, the volume density of foreign-body giant cells was inversely correlated with the volume density of bone (r(2) = 0.96), and the volume density of bone was directly proportional to the surface-area density of the polymer (r(2) = 0.97). Following coating degradation, other competitive factors, such as the biocompatibility and the biodegradability of the polymer itself, came into play.
Resumo:
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.
Resumo:
The aim of this study was to assess the differences in terms of curvature and angulation of the treated vessel after the deployment of either a metallic stent or a polymeric scaffold device.
Resumo:
This study sought to compare the neointimal response of metallic everolimus drug-eluting stents (DES) and polymeric everolimus bioresorbable vascular scaffolds (BVS) by optical coherence tomography at 1 year.
Resumo:
To compare the intravascular ultrasound virtual histology (IVUS-VH) appearance of the polymeric struts of the first (Revision 1.0) and the second (Revision 1.1) generation bioresorbable vascular scaffold (BVS).
Resumo:
The first generation of the everolimus-eluting bioresorbable vascular scaffold (BVS 1.0) showed an angiographic late loss higher than the metallic everolimus-eluting stent Xience V due to scaffold shrinkage. The new generation (BVS 1.1) presents a different design and manufacturing process than the BVS 1.0. This study sought to evaluate the differences in late shrinkage, neointimal response, and bioresorption process between these two scaffold generations using optical coherence tomography (OCT).
Resumo:
The purpose of this study is to assess jailing of side branches (SB) by the everolimus-eluting, bioresorbable vascular scaffold (BVS) with 3-dimensional (3D) optical coherence tomography (OCT) reconstruction.
Resumo:
Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.
Resumo:
The aim of this study was to compare the angiographic changes in coronary geometry of the bioresorbable vascular scaffolds (BVS) and metallic platform stent (MPS) between baseline and follow-up.
Resumo:
The ABSORB cohort A trial using the bioresorbable everolimus-eluting scaffold (BVS revision 1.0, Abbott Vascular) demonstrated a slightly higher acute recoil with BVS than with metallic stents. To reinforce the mechanical strength of the scaffold, the new BVS scaffold (revision 1.1) with modified strut design was developed and tested in the ABSORB cohort B trial. This study sought to evaluate and compare the in vivo acute scaffold recoil of the BVS revision 1.0 in ABSORB cohort A and the BVS revision 1.1 in ABSORB cohort B with the historical recoil of the XIENCE V® everolimus-eluting metal stent (EES, SPIRIT I and II).
Resumo:
Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.
Resumo:
Different synthetic routes have been used for the preparation of a new tetranuclear [Fe4O2(O2CCMe3)(8)(bpm)] cluster (1) and a one-dimensional coordination polymer [Fe4O2-(O2CCMe3)(8)(hmta)](n) (2) (bpm = 2,2'-bipyrimidine and hmta = hexamethylenetetramine). For cluster 1, two structural isomers, 1a and 1b center dot 3MeCN, have been found. X-ray crystallographic analysis showed that all complexes consist of a central {Fe-4(mu(3)-O)(2)}(8+) core. In 1a, metal ions in the core are additionally linked by six bridging pivalates as two other pivalates and a bpm ligand are chelated to Fe-III ions, whereas in cluster 1b, metal ions in the {Fe-4(mu(3)-O)(2)}(8+) core are linked by seven bridging pivalates and only one carboxylate as well as bpm are chelated to the iron centers. In coordination polymer 2, [Fe4O2(O2CCMe3)(8)] clusters are bridged by hmta ligands to form zigzag chains. Magnetic measurements have been carried out to characterize these complexes and revealed antiferromagnetic interactions between Fe-III ions with best-fit parameters of J(wb) = -72.2 (1a) and -88.7 cm(-1) (1b) for wing...body interactions.
Resumo:
To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation. In the ABSORB study, changes in the appearance of the ABSORB scaffold were monitored over time using various intracoronary imaging modalities. The scaffold struts exhibited a progressive change in their black core area by OCT, in their ultrasound derived grey level intensity quantified by echogenicity, and in their backscattering ultrasound signal, identified as "pseudo dense-calcium" (DC) by VH.