4 resultados para Physical Environment. Physics Curriculum. Teaching Program. Skills. Environmental Education
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A study was conducted on the highlands of Ethiopia to identify and analyse the factors determining the adoption of environmental management measures. In 1985, Ethiopia was classified into low –and high-potential areas based on the suitability of the natural environment for rain-fed agriculture. To address these objectives, case study areas were selected from low-potential and high-potential areas randomly. Data were collected through face-to-face interview and key informants, focus group discussion and field observation. In the low-potential areas, the physical environment ‒ particularly soil and forest environments have shown substantial recovery. Similarly, the water environment has improved. However, in the high-potential areas sampled, these resources are still being degraded. Clear understanding of the benefits of soil conservation structures by farmers, active involvement and technical support from the government and full and genuine participation of farmers in communal environmental resources management activities were found to be main factors in the adoption of environmental management measures.
Resumo:
BACKGROUND Living at higher altitude was dose-dependently associated with lower risk of ischaemic heart disease (IHD). Higher altitudes have different climatic, topographic and built environment properties than lowland regions. It is unclear whether these environmental factors mediate/confound the association between altitude and IHD. We examined how much of the altitude-IHD association is explained by variations in exposure at place of residence to sunshine, temperature, precipitation, aspect, slope and distance to main road. METHODS We included 4.2 million individuals aged 40-84 at baseline living in Switzerland at altitudes 195-2971 m above sea level (ie, full range of residence), providing 77 127 IHD deaths. Mortality data 2000-2008, sociodemographic/economic information and coordinates of residence were obtained from the Swiss National Cohort, a longitudinal, census-based record linkage study. Environment information was modelled to residence level using Weibull regression models. RESULTS In the model not adjusted for other environmental factors, IHD mortality linearly decreased with increasing altitude resulting in a lower risk (HR, 95% CI 0.67, 0.60 to 0.74) for those living >1500 m (vs<600 m). This association remained after adjustment for all other environmental factors 0.74 (0.66 to 0.82). CONCLUSIONS The benefit of living at higher altitude was only partially confounded by variations in climate, topography and built environment. Rather, physical environment factors appear to have an independent effect and may impact on cardiovascular health in a cumulative way. Inclusion of additional modifiable factors as well as individual information on traditional IHD risk factors in our combined environmental model could help to identify strategies for the reduction of inequalities in IHD mortality.
Resumo:
Noble gas radionuclides, including 81Kr (t1/2 = 229,000 years), 85Kr (t1/2 = 10.8 years), and 39Ar (t1/2 = 269 years), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples. Here we provide an overview of the ATTA technique, and a survey of recent progress made in several laboratories worldwide.We review the application of noble gas radionuclides in the geosciences and discuss how ATTA can help advance these fields, specifically: determination of groundwater residence times using 81Kr, 85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the main water masses of the oceans, to study circulation pathways and estimate mean residence times. Other scientific questions involving a deeper circulation of fluids in the Earth's crust and mantle are also within the scope of future applications. We conclude that the geoscience community would greatly benefit from an ATTA facility dedicated to this field, with instrumentation for routine measurements, as well as for research on further development of ATTA methods.