13 resultados para Photocatalytic Anti-bacterial
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.
Resumo:
Immunoglobulin A (IgA) is the main secretory immunoglobulin of mucous membranes and is powerfully induced by the presence of commensal microbes in the intestine. B cells undergo class switch recombination to IgA in the mucosa-associated lymphoid tissues, particularly mesenteric lymph nodes (MLNs) and Peyer's patches, through both T-dependent and T-independent pathways. IgA B cells primed in the mucosa traffic from the intestinal lymphoid structures, initially through the lymphatics and then join the bloodstream, to home back to the intestinal mucosa as IgA-secreting plasma cells. Once induced, anti-bacterial IgA can be extremely long-lived but is replaced if there is induction of additional IgA specificities by other microbes. The mucosal immune system is anatomically separated from the systemic immune system by the MLNs, which act as a firewall to prevent penetration of live intestinal bacteria to systemic sites. Dendritic cells sample intestinal bacteria and induce B cells to switch to IgA. In contrast, intestinal macrophages are adept at killing extracellular bacteria and are able to clear bacteria that have crossed the mucus and epithelial barriers. There is both a continuum between innate and adaptive immune mechanisms and compartmentalization of the mucosal immune system from systemic immunity that function to preserve host microbial mutualism.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.
Resumo:
Despite targeted therapy, case-fatality rates and neurologic sequelae of bacterial meningitis remain unacceptably high. The poor outcome is mainly due to secondary systemic and intracranial complications. These complications seem to be both a consequence of the inflammatory response to the invading pathogen and release of bacterial components by the pathogen itself. Therefore, within the last decades, research has focused on the mechanism underlying immune regulation and the inhibition of bacterial lysis in order to identify new targets for adjuvant therapy. The scope of this article is to give an overview on current treatment strategies of bacterial meningitis, to summarize new insights on the pathophysiology of bacterial meningitis, and to give an outlook on new treatment strategies derived from experimental models.
Resumo:
In a prospective randomized controlled double-blind study in 50 acutely injured patients, bacterially contaminated type 2-4 soft tissue wounds were treated with moist dressings of 0.2% Lavasept (fractionated polyhexamethylenbiguanide and macrogolum 4000) solution (n=28) in comparison with Ringer solution (n=22). Standardized swabs were taken on days 0, 2, 8 and 15 and investigated for microorganisms. For a quantitative evaluation, the number of colony forming units (CFU) was determined by a serial dilution technique. The tissue compatibility and anti-inflammatory effect were rated on a scale of 0 (=bad) to 3 (=very good). The most frequently found microorganism was Staphylococcus aureus, which was isolated from 13 wounds. Use of Lavasept led to a faster and significant reduction in microorganisms on the wound surfaces. The number of CFU per wound remained constant or decreased, in contrast to the wounds treated with Ringer solution. This was true for both Gram-positive and Gram-negative bacteria. There was no evidence of impaired wound healing in either group. The anti-inflammatory effect and the tissue compatibility of Lavasept were rated significantly better than that of Ringer solution. It is concluded that Lavasept combines antiseptic action with good tissue compatibility.
Resumo:
A number of advances in our understanding of the pathophysiology of bacterial meningitis have been made in recent years. In vivo studies have shown that bacterial cell wall fragments and endotoxins are highly active components, independent of the presence of viable bacteria in the subarachnoid space. Their presence in the cerebrospinal fluid is associated with the induction of inflammation and with the development of brain edema and increased intracranial pressure. Antimicrobial therapy may cause an additional increase of harmful bacterial products in the cerebrospinal fluid and thereby potentiate these pathophysiological alterations. These changes may contribute to the development of brain damage during meningitis. Some promising experimental work has been directed toward counteracting the above phenomena with non-steroidal or steroidal anti-inflammatory agents as well as with monoclonal antibodies. Although considerable advances have been made, further research needs to be done in these areas to improve the prognosis of bacterial meningitis.
Resumo:
One of the several possible causes of irritable bowel syndrome (IBS) is thought to be low-grade mucosal inflammation. Flagellin, the primary structural component of bacterial flagellae, was shown in inflammatory bowel disease patients to activate the innate and adaptive immunity. It has not yet been conclusively established if IBS patients show reactivity to luminal antigens. In 266 patients [112 IBS, 61 Crohn's disease (CD), 50 ulcerative colitis (UC) and 43 healthy controls (HC)], we measured antibodies to flagellin (FAB, types A4-Fla2 and Fla-X), anti-Saccharomyces cerevisiae antibodies (ASCA) (both ELISA), antipancreas antibodies (PAB) and perinuclear antineutrophil cytoplasmatic antibodies (p-ANCA) (both IF). All IBS patients had normal fecal calprotectin (mean 21 microg mL(-1), SD 6.6) and fulfilled the ROME II criteria. Frequencies of antibodies in patients with IBS, CD, UC and HC, respectively, are as follows (in per cent): antibodies against A4-Fla2: 29/48/8/7; antibodies against Fla-X: 26/52/10/7; ASCA: 6/59/0/2; p-ANCA: 0/10/52/0; and PAB: 0/28/0/0. Antibodies against A4-Fla2 and Fla-X were significantly more frequent in IBS patients than in HC (P = 0.004 and P = 0.009). Antibodies to A4-Fla2 and Fla-X were significantly more frequent in IBS patients with antecedent gastroenteritis compared to non-postinfectious IBS patients (P = 0.002 and P = 0.012). In contrast to ASCA, PAB and p-ANCA, antibodies against A4-Fla2 and Fla-X were found significantly more often in IBS patients, particularly in those with postinfectious IBS, compared to HC. This observation supports the concept that immune reactivity to luminal antigens has a putative role in the development of IBS, at least in a subset of patients.
Resumo:
BACKGROUND: Natural xenoreactive antibodies (Abs) directed against the Bdi-epitope (Gal alpha 1-3Gal beta) on the cells of non-primate mammals take part in hyperacute rejection of xenotransplanted organs. We found that some Abs, which were one-step affinity purified on Bdi-Sepharose, cross-reacted with the disaccharide Gal alpha 1-4GlcNAc beta. The epitope Gal alpha 1-4GlcNAc has not been identified on mammals or bacterial polysaccharides yet. METHODS: To isolate the antibodies of the corresponding specificity the disaccharide was immobilized on Sepharose and antibodies were affinity purified from pooled serum of blood group O individuals. RESULTS: These one-step purified Abs cross-reacted with Bdi, but after a prior absorption step on Bdi-Sepharose no cross-reactivity with Bdi was observed any longer. Surprisingly, the quantity of anti-Gal alpha 1-4GlcNAc isolated from the same serum pool, 4-7 microg/ml, was equal to that of anti-Bdi or more. Independently of ABO blood groups all the tested healthy donors had anti-Gal alpha 1-4GlcNAc Abs at a similar level. Monospecific anti-Gal alpha 1-4GlcNAc Abs were not cytotoxic towards porcine cells. CONCLUSIONS: 1. The actual concentration of monospecific, xenoreactive Gal alpha 1-3Gal beta Abs in blood may be considerably lower than the value referred to in the literature for 'anti-alpha Gal' or 'anti-Galili' antibodies. 2. Anti-Gal alpha 1-4GlcNAc Abs seem not to be important for xenotransplantation.
Resumo:
OBJECTIVE: The objective of the study is to compare the clinical, microbiological and host-derived effects in the non-surgical treatment of initial peri-implantitis with either adjunctive local drug delivery (LDD) or adjunctive photodynamic therapy (PDT) after 12 months. MATERIALS AND METHODS: Forty subjects with initial peri-implantitis, that is, pocket probing depths (PPD) 4-6 mm with bleeding on probing (BoP) and radiographic bone loss ≤2 mm, were randomly assigned to two treatment groups. All implants were mechanically debrided with titanium curettes and with a glycine-based powder airpolishing system. Implants in the test group (N = 20) received adjunctive PDT, whereas minocycline microspheres were locally delivered into the peri-implant pockets of control implants (N = 20). At sites with residual BoP, treatment was repeated after 3, 6, 9 and 12 months. The primary outcome variable was the change in the number of peri-implant sites with BoP. Secondary outcome variables included changes in PPD, clinical attachment level (CAL), mucosal recession (REC) and in bacterial counts and crevicular fluid (CF) levels of host-derived biomarkers. RESULTS: After 12 months, the number of BoP-positive sites decreased statistically significantly (P < 0.05) from baseline in both groups (PDT: 4.03 ± 1.66-1.74 ± 1.37, LDD: 4.41 ± 1.47-1.55 ± 1.26). A statistically significant (P < 0.05) decrease in PPD from baseline was observed at PDT-treated sites up to 9 months (4.19 ± 0.55 mm to 3.89 ± 0.68 mm) and up to 12 months at LDD-treated sites (4.39 ± 0.77 mm to 3.83 ± 0.85 mm). Counts of Porphyromonas gingivalis and Tannerella forsythia decreased statistically significantly (P < 0.05) from baseline to 6 months in the PDT and to 12 months in the LDD group, respectively. CF levels of IL-1β decreased statistically significantly (P < 0.05) from baseline to 12 months in both groups. No statistically significant differences (P > 0.05) were observed between groups after 12 months with respect to clinical, microbiological and host-derived parameters. CONCLUSIONS: Non-surgical mechanical debridement with adjunctive PDT was equally effective in the reduction of mucosal inflammation as with adjunctive delivery of minocycline microspheres up to 12 months. Adjunctive PDT may represent an alternative approach to LDD in the non-surgical treatment of initial peri-implantitis.
Resumo:
BACKGROUND The brain's inflammatory response to the infecting pathogen determines the outcome of bacterial meningitis (BM), for example, the associated mortality and the extent of brain injury. The inflammatory cascade is initiated by the presence of bacteria in the cerebrospinal fluid (CSF) activating resident immune cells and leading to the influx of blood derived leukocytes. To elucidate the pathomechanisms behind the observed difference in outcome between different pathogens, we compared the inflammatory profile in the CSF of patients with BM caused by Streptococcus pneumonia (n = 14), Neisseria meningitidis (n = 22), and Haemophilus influenza (n = 9). METHODS CSF inflammatory parameters, including cytokines and chemokines, MMP-9, and nitric oxide synthase activity, were assessed in a cohort of patients with BM from Burkina Faso. RESULTS Pneumococcal meningitis was associated with significantly higher CSF concentrations of IFN-γ , MCP-1, and the matrix-metalloproteinase (MMP-) 9. In patients with a fatal outcome, levels of TNF-α, IL-1 β, IL-1RA, IL-6, and TGF-α were significantly higher. CONCLUSION The signature of pro- and anti-inflammatory mediators and the intensity of inflammatory processes in CSF are determined by the bacterial pathogen causing bacterial meningitis with pneumococcal meningitis being associated with a higher case fatality rate than meningitis caused by N. meningitidis or H. influenzae.
Resumo:
OBJECTIVE: The aetiology of Crohn's disease (CD) has been related to nucleotide-binding oligomerisation domain containing 2 (NOD2) and ATG16L1 gene variants. The observation of bacterial DNA translocation in patients with CD led us to hypothesise that this process may be facilitated in patients with NOD2/ATG16L1-variant genotypes, affecting the efficacy of anti-tumour necrosis factor (TNF) therapies. DESIGN: 179 patients with Crohn's disease were included. CD-related NOD2 and ATG16L1 variants were genotyped. Phagocytic and bactericidal activities were evaluated in blood neutrophils. Bacterial DNA, TNFα, IFNγ, IL-12p40, free serum infliximab/adalimumab levels and antidrug antibodies were measured. RESULTS: Bacterial DNA was found in 44% of patients with active disease versus 23% of patients with remitting disease (p=0.01). A NOD2-variant or ATG16L1-variant genotype was associated with bacterial DNA presence (OR 4.8; 95% CI 1.1 to 13.2; p=0.001; and OR 2.4; 95% CI 1.4 to 4.7; p=0.01, respectively). This OR was 12.6 (95% CI 4.2 to 37.8; p=0.001) for patients with a double-variant genotype. Bacterial DNA was associated with disease activity (OR 2.6; 95% CI 1.3 to 5.4; p=0.005). Single and double-gene variants were not associated with disease activity (p=0.19). Patients with a NOD2-variant genotype showed decreased phagocytic and bactericidal activities in blood neutrophils, increased TNFα levels in response to bacterial DNA and decreased trough levels of free anti-TNFα. The proportion of patients on an intensified biological therapy was significantly higher in the NOD2-variant groups. CONCLUSIONS: Our results characterise a subgroup of patients with CD who may require a more aggressive therapy to reduce the extent of inflammation and the risk of relapse
Resumo:
Mutations of STAT3 underlie the autosomal dominant form of hyperimmunoglobulin E syndrome (HIES). STAT3 has critical roles in immune cells and thus, hematopoietic stem cell transplantation (HSCT), might be a reasonable therapeutic strategy in this disease. However, STAT3 also has critical functions in nonhematopoietic cells and dissecting the protean roles of STAT3 is limited by the lethality associated with germline deletion of Stat3. Thus, predicting the efficacy of HSCT for HIES is difficult. To begin to dissect the importance of STAT3 in hematopoietic and nonhematopoietic cells as it relates to HIES, we generated a mouse model of this disease. We found that these transgenic mice recapitulate multiple aspects of HIES, including elevated serum IgE and failure to generate Th17 cells. We found that these mice were susceptible to bacterial infection that was partially corrected by HSCT using wild-type bone marrow, emphasizing the role played by the epithelium in the pathophysiology of HIES.
Resumo:
Despite the paradigm that carbohydrates are T cell-independent antigens, isotype-switched glycan-specific immunoglobulin G (IgG) antibodies and polysaccharide-specific T cells are found in humans. We used a systems-level approach combined with glycan array technology to decipher the repertoire of carbohydrate-specific IgG antibodies in intravenous and subcutaneous immunoglobulin preparations. A strikingly universal architecture of this repertoire with modular organization among different donor populations revealed an association between immunogenicity or tolerance and particular structural features of glycans. Antibodies were identified with specificity not only for microbial antigens but also for a broad spectrum of host glycans that serve as attachment sites for viral and bacterial pathogens and/or exotoxins. Tumor-associated carbohydrate antigens were differentially detected by IgG antibodies, whereas non-IgG2 reactivity was predominantly absent. Our study highlights the power of systems biology approaches to analyze immune responses and reveals potential glycan antigen determinants that are relevant to vaccine design, diagnostic assays, and antibody-based therapies.