36 resultados para Perceptual-motor learning.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We tested the hypothesis that the interaction of self-control strength and state anxiety predicts perceptual–motor performance in a hand–eye coordination task. We predicted a stronger negative relation between anxiety and performance in a perceptual–motor task for participants whose self-control strength had been temporarily depleted compared to participants whose self-control strength was intact. In an experiment (N = 60), we manipulated self-control strength, measured state anxiety after an evaluative instruction, and assessed performance in the board game Operation as an indicator of perceptual–motor performance. The data supported our hypothesis: Only for participants whose self-control strength was temporarily depleted was there a statistically significant negative relation between anxiety and performance. Boosting self-control strength may help to prevent the potentially negative anxiety effects.
Resumo:
The purpose of this review is to investigate how transcranial direct current stimulation(tDCS)can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.
Resumo:
Patients with homonymous hemianopia have altered visual search patterns, but it is unclear how rapidly this develops and whether it reflects a strategic adaptation to altered perception or plastic changes to tissue damage. To study the temporal dynamics of adaptation alone, we used a gaze-contingent display to simulate left or right hemianopia in 10 healthy individuals as they performed 25 visual search trials. Visual search was slower and less accurate in hemianopic than in full-field viewing. With full-field viewing, there were improvements in search speed, fixation density, and number of fixations over the first 9 trials, then stable performance. With hemianopic viewing, there was a rapid shift of fixation into the blind field over the first 5-7 trials, followed by continuing gradual improvements in completion time, number of fixations, and fixation density over all 25 trials. We conclude that in the first minutes after onset of hemianopia, there is a biphasic pattern of adaptation to altered perception: an early rapid qualitative change that shifts visual search into the blind side, followed by more gradual gains in the efficiency of using this new strategy, a pattern that has parallels in other studies of motor learning.
Resumo:
We have developed a haptic-based approach for retraining of interjoint coordination following stroke called time-independent functional training (TIFT) and implemented this mode in the ARMin III robotic exoskeleton. The ARMin III robot was developed by Drs. Robert Riener and Tobias Nef at the Swiss Federal Institute of Technology Zurich (Eidgenossische Technische Hochschule Zurich, or ETH Zurich), in Zurich, Switzerland. In the TIFT mode, the robot maintains arm movements within the proper kinematic trajectory via haptic walls at each joint. These arm movements focus training of interjoint coordination with highly intuitive real-time feedback of performance; arm movements advance within the trajectory only if their movement coordination is correct. In initial testing, 37 nondisabled subjects received a single session of learning of a complex pattern. Subjects were randomized to TIFT or visual demonstration or moved along with the robot as it moved though the pattern (time-dependent [TD] training). We examined visual demonstration to separate the effects of action observation on motor learning from the effects of the two haptic guidance methods. During these training trials, TIFT subjects reduced error and interaction forces between the robot and arm, while TD subject performance did not change. All groups showed significant learning of the trajectory during unassisted recall trials, but we observed no difference in learning between groups, possibly because this learning task is dominated by vision. Further testing in stroke populations is warranted.
Resumo:
Many rehabilitation robots use electric motors with gears. The backdrivability of geared drives is poor due to friction. While it is common practice to use velocity measurements to compensate for kinetic friction, breakaway friction usually cannot be compensated for without the use of an additional force sensor that directly measures the interaction force between the human and the robot. Therefore, in robots without force sensors, subjects must overcome a large breakaway torque to initiate user-driven movements, which are important for motor learning. In this technical note, a new methodology to compensate for both kinetic and breakaway friction is presented. The basic strategy is to take advantage of the fact that, for rehabilitation exercises, the direction of the desired motion is often known. By applying the new method to three implementation examples, including drives with gear reduction ratios 100-435, the peak breakaway torque could be reduced by 60-80%.
Resumo:
In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.
Resumo:
In the present article, we argue that it may be fruitful to incorporate the ideas of the strength model of self-control into the core assumptions of the well-established attentional control theory (ACT). In ACT, it is assumed that anxiety automatically leads to attention disruption and increased distractibility, which may impair subsequent cognitive or perceptual-motor performance, but only if individuals do not have the ability to counteract this attention disruption. However, ACT does not clarify which process determines whether one can volitionally regulate attention despite experiencing high levels of anxiety. In terms of the strength model of self-control, attention regulation can be viewed as a self-control act depending on the momentary availability of self-control strength. We review literature that has revealed that self-control strength moderates the anxiety-performance relationship, discuss how to integrate these two theoretical models, and offer practical recommendations of how to counteract negative anxiety effects.
Resumo:
In the present study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants’ dart throwing performance and accompanying gaze behavior. According to the strength model of self-control the most important aspect of self-control is attention regulation (Schmeichel & Baumeister, 2010). As higher levels of state anxiety are associated with impaired attention regulation (Nieuwenhuys & Oudejans, 2012) we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. A total of 28 right-handed students participated in our study (Mage = 23.4, SDage = 2.5; 10 female; no professional dart experience). Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. The task was performed while participants were positioned high and low on a climbing wall (i.e., with high and low levels of anxiety). In line with our expectations, a mixed-design ANOVA revealed that depleted participants in the high anxiety condition performed worse (p < .001) and displayed a shorter final fixation on bull’s eye (p < .01) than in the low anxiety condition, demonstrating that when one is depleted attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.
Resumo:
High precision in motor skill performance, in both sport and other domains (e.g. surgery and aviation), requires the efficient coupling of perceptual inputs (e.g. vision) and motor actions. A particular gaze strategy, which has received much attention within the literature, has been shown to predict both inter- (expert vs. novice) and intra-individual (successful vs. unsuccessful) motor performance (see Vine et al., 2014). Vickers (1996) labelled this phenomenon the quiet eye (QE) which is defined as the final fixation before the initiation of the crucial phase of movement. While the positive influence of a long QE on accuracy has been revealed in a range of different motor skills, there is a growing number of studies suggesting that the relationship between QE and motor performance is not entirely monotonic. This raises interesting questions regarding the QE’s purview, and the theoretical approaches explaining its functionality. This talk aims to present an overview of the issues described above, and to discuss contemporary research and experimental approaches to examining the QE phenomenon. In the first part of the talk Dr. Vine will provide a brief and critical review of the literature, highlighting recent empirical advancements and potential directions for future research. In the second part, Dr. Klostermann will communicate three different theoretical approaches to explain the relationship between QE and motor performance. Drawing upon aspects of all three of these theoretical approaches, a functional inhibition role for the QE (related to movement parameterisation) will be proposed.