8 resultados para PRECLINICAL DEVELOPMENT
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Metabolomics is the global and unbiased survey of the complement of small molecules (say, <1 kDa) in a biofluid, tissue, organ or organism and measures the end-products of the cellular metabolism of both endogenous and exogenous substrates. Many drug candidates fail during Phase II and III clinical trials at an enormous cost to the pharmaceutical industry in terms of both time lost and of financial resources. The constantly evolving model of drug development now dictates that biomarkers should be employed in preclinical development for the early detection of likely-to-fail candidates. Biomarkers may also be useful in the preselection of patients and through the subclassification of diseases in clinical drug development. Here we show with examples how metabolomics can assist in the preclinical development phases of discovery, pharmacology, toxicology, and ADME. Although not yet established as a clinical trial patient prescreening procedure, metabolomics shows considerable promise in this regard. We can be certain that metabolomics will join genomics and transcriptomics in lubricating the wheels of clinical drug development in the near future.
Resumo:
Positron emission tomography (PET)-computed tomography (CT) using [18F]-fluorodeoxyglucose (FDG) (FDG-PET/CT) is a valuable method for initial staging and follow up of patients with alveolar echinococcosis (AE). However, the cells responsible for FDG uptake have not been clearly identified. The main goal of our study was to evaluate the uptake of PET tracers by the cells involved in the host-parasite reaction around AE lesions as the first step to develop a specific PET tracer that would allow direct assessment of parasite viability in AE. Candidate molecules ([18F]-fluorotyrosine (FET), [18F]-fluorothymidine (FLT), and [18F]-fluorometylcholine (FMC), were compared to FDG by in vitro studies on human leukocytes and parasite vesicles. Our results confirmed that FDG was mainly consumed by immune cells and showed that FLT was the best candidate tracer for parasite metabolism. Indeed, parasite cells exhibited high uptake of FLT. We also performed PET/CT scans in mice infected intraperitoneally with E. multilocularis metacestodes. PET images showed no FDG or FLT uptake in parasitic lesions. This preliminary study assessed the metabolic activity of human leukocytes and AE cells using radiolabeling. Future studies could develop a specific PET tracer for AE lesions to improve lesion detection and echinococcosis treatment in patients. Our results demonstrated that a new animal model is needed for preclinical PET imaging to better mimic human hepatic and/or periparasitic metabolism.
Resumo:
Among the many cell types that may prove useful to regenerative medicine, mounting evidence suggests that human term placenta-derived cells will join the list of significant contributors. In making new cell therapy-based strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and characteristics of cells from different sources should be made to promote constant improvement in cell therapies, and such comparisons will likely show that individually tailored cells can address disease-specific clinical needs. The principle underlying such an approach is resistance to the notion that comprehensive characterization of any cell type has been achieved, neither in terms of phenotype nor risks-to-benefits ratio. Tailoring cell therapy approaches to specific conditions also requires an understanding of basic disease mechanisms and close collaboration between translational researchers and clinicians, to identify current needs and shortcomings in existing treatments. To this end, the international workshop entitled "Placenta-derived stem cells for treatment of inflammatory diseases: moving toward clinical application" was held in Brescia, Italy, in March 2009, and aimed to harness an understanding of basic inflammatory mechanisms inherent in human diseases with updated findings regarding biological and therapeutic properties of human placenta-derived cells, with particular emphasis on their potential for treating inflammatory diseases. Finally, steps required to allow their future clinical application according to regulatory aspects including good manufacturing practice (GMP) were also considered. In September 2009, the International Placenta Stem Cell Society (IPLASS) was founded to help strengthen the research network in this field.
Resumo:
Naive T cells are migratory cells that continuously recirculate between blood and lymphoid tissues. Antigen-specific stimulation of T cells within the lymph nodes reprograms the trafficking properties of T cells by inducing a specific set of adhesion molecules and chemokine receptors on their surface which allow these activated and effector T cells to effectively and specifically home to extralymphoid organs. The observations of organ-specific homing of T cells initiated the development of therapeutic strategies targeting adhesion receptors for organ-specific inhibition of chronic inflammation. As most adhesion receptors have additional immune functions besides mediating leukocyte trafficking, these drugs may have additional immunomodulatory effects. Therapeutic targeting of T-cell trafficking to the central nervous system is the underlying concept of a novel treatment of relapsing remitting multiple sclerosis with the humanized anti-alpha-4-integrin antibody natalizumab. In this chapter, we describe a possible preclinical in vivo approach to directly visualize the therapeutic efficacy of a given drug in inhibiting T-cell homing to a certain organ at the example of the potential of natalizumab to inhibit the trafficking of human T cells to the inflamed central nervous system in an animal model of multiple sclerosis.
Resumo:
BACKGROUND There is an urgent need for preclinical models of prostate cancer; however, clinically relevant patient-derived prostate cancer xenografts (PDXs) are demanding to establish. METHODS Sixty-seven patients who were undergoing palliative transurethral surgery or radical prostatectomy for histologically confirmed, clinically relevant prostate cancer were included in the study. Fresh prostate cancer tissue was identified by frozen analysis in 48 patients. The cancer tissue was transplanted subcutaneously and under the renal capsule of NSG and NOG mice supplemented with human testosterone. All growing PDXs were evaluated by histology and immunohistochemistry. RESULTS Early assessment of the animals at least three months after transplantation included 27/48 (56.3%) eligible PDX cohorts. PDX growth was detected in 10/27 (37%) mouse cohorts. Eight of the ten PDXs were identified as human donor derived lymphomas, including seven Epstein Barr virus (EBV)-positive diffuse large B-cell lymphomas and one EBV-negative peripheral T-cell lymphoma. One sample consisted of benign prostatic tissue, and one sample comprised a benign epithelial cyst. Prostate cancer was not detected in any of the samples. CONCLUSIONS Tumors that arise within the first three months after prostate cancer xenografting may represent patient-derived EBV-positive lymphomas in up to 80% of the early growing PDXs when using triple knockout NSG immunocompromised mice. Therefore, lymphoma should be excluded in prostate cancer xenografts that do not resemble typical prostatic adenocarcinoma. Prostate 9999: XX-XX, 2014. © 2015 Wiley Periodicals, Inc.
Resumo:
A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors. METHODS GIP(1-42) was modified C-terminally, and the truncated peptides [Lys(30)(aminohexanoic acid [Ahx]-DOTA)]GIP(1-30)NH2 (EG1), [Lys(16)(Ahx-DOTA)]GIP(1-30)NH2 (EG2), and [Nle(14), Lys(30)(Ahx-DOTA)]GIP(1-30)NH2 (EG4) were conjugated with Ahx-DOTA via the Lys(16) and Lys(30) side chains. Their inhibitory concentration of 50% (IC50) was determined using [(125)I-Tyr(10)]GIP(1-30) as radioligand and GIP(1-30) as control peptide. The DOTA conjugates were labeled with (111)In and (68)Ga. In vitro evaluation included saturation and internalization studies using the pancreatic endocrine cell line INR1G9 transfected with the human GIP receptor (INR1G9-hGIPr). The in vivo evaluation consisted of biodistribution and PET imaging studies on nude mice bearing INR1G9-hGIPr tumors. RESULTS Binding studies (IC50 and saturation studies) showed high affinity toward GIP receptor for the GIP conjugates. Specific in vitro internalization was found, and almost the entire cell-associated activity was internalized (>90% of the cell-bound activity), supporting the agonist potency of the (111)In-vectors. (111)In-EG4 and (68)Ga-EG4 were shown to specifically target INR1G9-hGIPr xenografts, with tumor uptake of 10.4% ± 2.2% and 17.0% ± 4.4% injected activity/g, 1 h after injection, respectively. Kidneys showed the highest uptake, which could be reduced by approximately 40%-50% with a modified-fluid-gelatin plasma substitute or an inhibitor of the serine protease dipeptidyl peptidase 4. The PET images clearly visualized the tumor. CONCLUSION The evaluation of EG4 as a proof-of-principle radioligand indicated the feasibility of imaging GIP receptor-positive tumors. These results prompt us to continue the development of this family of radioligands for imaging of a broad spectrum of NETs.
Resumo:
Interleukin-1β (IL-1β) is a key cytokine involved in inflammatory illnesses including rare hereditary diseases and common chronic inflammatory conditions as gout, rheumatoid arthritis, and type 2 diabetes mellitus, suggesting reduction of IL-1β activity as new treatment strategy. The objective of our study was to assess safety, antibody response, and preliminary efficacy of a novel vaccine against IL-1β. The vaccine hIL1bQb consisting of full-length, recombinant IL-1β coupled to virus-like particles was tested in a preclinical and clinical, randomized, placebo-controlled, double-blind study in patients with type 2 diabetes. The preclinical simian study showed prompt induction of IL-1β-specific antibodies upon vaccination, while neutralizing antibodies appeared with delay. In the clinical study with 48 type 2 diabetic patients, neutralizing IL-1β-specific antibody responses were detectable after six injections with doses of 900 µg. The development of neutralizing antibodies was associated with higher number of study drug injections, lower baseline body mass index, improvement of glycemia, and C-reactive protein (CRP). The vaccine hIL1bQb was safe and well-tolerated with no differences regarding adverse events between patients receiving hIL1bQb compared to placebo. This is the first description of a vaccine against IL-1β and represents a new treatment option for IL-1β-dependent diseases such as type 2 diabetes mellitus (ClinicalTrials.gov NCT00924105).Molecular Therapy (2016); doi:10.1038/mt.2015.227.
Resumo:
GOAL We present the development of a boneanchored port for the painless long-term hemodialytic treatment of patients with renal failure. This port is implanted behind the ear. METHODS The port was developed based on knowledge obtained from long-term experience with implantable hearing devices, which are firmly anchored to the bone behind the ear. This concept of bone anchoring was adapted to the requirements for a vascular access during hemodialysis. The investigational device is comprised of a base plate that is firmly fixed with bone screws to the bone behind the ear (temporal bone). A catheter leads from the base plate valve block through the internal jugular vein and into the right atrium. The valves are opened using a special disposable adapter, without any need to puncture the blood vessels. Between hemodialysis sessions the port is protected with a disposable cover. RESULTS Flow rate, leak tightness and purification were tested on mockups. Preoperative planning and the surgical procedure were verified in 15 anatomical human whole head specimens. CONCLUSION Preclinical evaluations demonstrated the technical feasibility and safety of the investigational device. SIGNIFICANCE Approximately 1.5 million people are treated with hemodialysis worldwide, and 25% of the overall cost of dialysis therapy results from vascular access problems. New approaches towards enhancing vascular access could potentially reduce the costs and complications of hemodialytic therapy.