6 resultados para POLYELECTROLYTE MULTILAYER CAPSULES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To analyze the transit time from various locations in the intestines of cows with cecal dilatation-dislocation (CDD), healthy control cows, and cows with left displacement of the abomasum (LDA). ANIMALS 15 cows with naturally occurring CDD (group 1), 14 healthy control cows (group 2), and 18 cows with LDA (group 3). PROCEDURES 5 electronic transmitters were encased in capsules and placed in the lumen of the ileum, cecum, proximal portion of the colon, and 2 locations in the spiral colon (colon 1 and colon 2) and used to measure the transit time (ie, time between placement in the lumen and excretion of the capsules from the rectum). Excretion time of the capsules from each intestinal segment was compared among groups. RESULTS Cows recovered well from surgery, except for 1 cow with relapse of CDD 4 days after surgery and 2 cows with incisional infection. High variability in capsule excretion times was observed for all examined intestinal segments in all groups. Significant differences were detected for the excretion time from the colon (greater in cows with CDD than in healthy control cows) and cecum (less in cows with LDA than in cows of the other 2 groups). CONCLUSIONS AND CLINICAL RELEVANCE The technique developed to measure excretion time of capsules from bovine intestines was safe and reliable; however, the large variability observed for all intestinal segments and all groups would appear to be a limitation for its use in assessment of intestinal transit time of cattle in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge–discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g−1 at a current density of 10 μA cm−2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.