241 resultados para PNEUMOCOCCAL INFECTIONS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To assess whether the influenza peak in populations precedes the annual peak for invasive pneumococcal infections (IPI) in winter. DESIGN: Ecological study. Active surveillance data on influenza A and IPI in children up to 16 years of age collected from 1997 to 2003 were analysed. SETTING: Paediatric hospitals in Germany. Patients: Children under 16 years of age. RESULTS: In all years under study, the influenza A season did not appear to affect the IPI season (p = 0.49). Specifically, the influenza peak never preceded the IPI peak. CONCLUSION: On a population level there was no indication that the annual influenza epidemic triggered the winter increase in the IPI rate or the peak of the IPI distribution in children.
Resumo:
Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.
Resumo:
Fosfomycin targets the first step of peptidoglycan biosynthesis in Streptococcus pneumoniae catalyzed by UDP-N-acetylglucosamine enolpyruvyltransferase (MurA1). We investigated whether heteroresistance to fosfomycin occurs in S. pneumoniae. We found that of 11 strains tested, all but 1 (Hungary(19A)) displayed heteroresistance and that deletion of murA1 abolished heteroresistance. Hungary(19A) differs from the other strains by a single amino acid substitution in MurA1 (Ala364Thr). To test whether this substitution is responsible for the lack of heteroresistance, it was introduced into strain D39. The heteroresistance phenotype of strain D39 was not changed. Furthermore, no relevant structural differences between the MurA1 crystal structures of heteroresistant strain D39 and nonheteroresistant strain Hungary(19A) were found. Our results reveal that heteroresistance to fosfomycin is the predominant phenotype of S. pneumoniae and that MurA1 is required for heteroresistance to fosfomycin but is not the only factor involved. The findings provide a caveat for any future use of fosfomycin in the treatment of pneumococcal infections.
Resumo:
The surveillance of pneumococcal antibiotic resistance and serotype distribution is hampered by the relatively low numbers of invasive pneumococcal infections. In Switzerland, a nationwide sentinel surveillance network was used to assess antibiotic resistance and serotype distribution among 1179 pneumococcal isolates cultured from 2769 nasopharyngeal swabs obtained from outpatients with acute otitis media or pneumonia during 1998 and 1999. The proportion of penicillin-susceptible pneumococcal isolates overall (87%) and among infants <2 years old (81%) was comparable to that of invasive isolates (90% and 81%, respectively). The high number of nasopharyngeal isolates allowed for the detection of a rapid increase in the number of penicillin-nonsusceptible pneumococcal (PNSP) strains in the West region of Switzerland, partly because of an epidemic caused by the 19F clone of Streptococcus pneumoniae. Clustering of risk factors for the carriage of PNSP isolates further explained the geographic variation in resistance rates. The nationwide sentinel surveillance of nasopharyngeal pneumococcus proved to be valuable for the monitoring of antibiotic resistance, risk factors for carriage of PNSP isolates, and serotype distribution and for the detection of the emergence of a new epidemic clone.
Resumo:
BACKGROUND: The continuous spread of penicillin-resistant pneumococci represents a permanent threat in the treatment of pneumococcal infections, especially when strains show additional resistance to quinolones. The main objective of this study was to determine a treatment modality impeding the emergence of quinolone resistance. RESULTS: Exposure of a penicillin-resistant pneumococcus to increasing concentrations of trovafloxacin or ciprofloxacin selected for mutants resistant to these drugs. In the presence of sub-inhibitory concentrations of vancomycin, development of trovafloxacin-resistance and high-level ciprofloxacin-resistance were prevented. CONCLUSIONS: Considering the risk of quinolone-resistance in pneumococci, the observation might be of clinical importance.
Resumo:
Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.
Resumo:
Moraxella catarrhalis (M. catarrhalis) is a human-restricted commensal of the normal bacterial flora in the upper respiratory tract of children, and - during the previous two decades - has been recognised as a true human pathogen. M. catarrhalis is the third most common pathogen causing acute otitis media in children, which is the most common reason to visit a paediatrician during childhood. Acute otitis media thus causes a high clinical and economical burden. With the introduction of the conjugate pneumococcal vaccines the microbiomic pattern in the nasopharyngeal flora of children has changed, and the frequency of isolation of M. catarrhalis has increased. Compared to adults, children are more often colonised with M. catarrhalis. Over the last three decades there has been a dramatic increase in the acquisition of β-lactam resistance in M. catarrhalis. Today 95-100% of clinically isolated M. catarrhalis produce β-lactamase. It is thus desirable to reduce the burden of M. catarrhalis disease by developing a vaccine. There are several potential vaccine antigen candidates in different stages of development, but none of them has entered clinical trials at the present time.
Resumo:
Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance
Resumo:
BACKGROUND: Polymerase chain reaction (PCR) is a sensitive tool for detection of respiratory picornaviruses. However, the clinical relevance of picornavirus detection by PCR is unclear. Immunofluorescence (IF), widely used to detect other respiratory viruses, has recently been introduced as a promising detection method for respiratory picornaviruses. OBJECTIVES: To compare the clinical manifestations of respiratory picornavirus infections detected by IF with those of respiratory picornavirus infections detected by xTAG multiplex PCR in hospitalized children. STUDY DESIGN: During a 1-year period, nasopharyngeal aspirates (NPA) from all children hospitalized due to an acute respiratory infection were prospectively analyzed by IF. All respiratory picornavirus positive IF samples and 100 IF negative samples were further tested with xTAG multiplex PCR. After exclusion of children with co-morbidities and viral co-infections, monoinfections with respiratory picornaviruses were detected in 108 NPA of 108 otherwise healthy children by IF and/or PCR. We compared group 1 children (IF and PCR positive, n=84) with group 2 children (IF negative and PCR positive, n=24) with regard to clinical manifestations of the infection. RESULTS: Wheezy bronchitis was diagnosed more often in group 1 than in group 2 (71% vs. 46%, p=0.028). In contrast, group 2 patients were diagnosed more frequently with pneumonia (17% vs. 6%, p=0.014) accompanied by higher levels of C-reactive protein (46mg/l vs. 11mg/l, p=0.009). CONCLUSIONS: Picornavirus detection by IF in children with acute respiratory infection is associated with the clinical presentation of wheezy bronchitis. The finding of a more frequent diagnosis of pneumonia in picornavirus PCR positive but IF negative children warrants further investigation.
Resumo:
To evaluate, in a prospective pilot study, the feasibility of identifying pathogens in urine using real-time polymerase chain reaction (PCR), and to compare the results with the conventional urine culture-based procedures.
Resumo:
Pneumococcal meningitis causes neurological sequelae, including learning and memory deficits in up to half of the survivors. In both humans and in animal models of the disease, there is apoptotic cell death in the hippocampus, a brain region involved in learning and memory function. We previously demonstrated that in an infant rat model of pneumococcal meningitis, there is activation of the kynurenine (KYN) pathway in the hippocampus, and that there was a positive correlation between the concentration of 3-hydroxykynurenine and the extent of hippocampal apoptosis. To clarify the role of the KYN pathway in the pathogenesis of hippocampal apoptosis in pneumococcal meningitis, we specifically inhibited 2 key enzymes of the KYN pathway and assessed hippocampal apoptosis, KYN pathway metabolites, and nicotinamide adenine dinucleotide (NAD) concentrations by high-performance liquid chromatography. Pharmacological inhibition of kynurenine 3-hydroxylase and kynureninase led to decreased cellular NAD levels and increased apoptosis in the hippocampus. The cerebrospinal fluid levels of tumor necrosis factor and interleukin-1? and -? were not affected. Our data suggest that activation of the KYN pathway in pneumococcal meningitis is neuroprotective by compensating for an increased NAD demand caused by infection and inflammation;this mechanism may prevent energy failure and apoptosis in the hippocampus.
Resumo:
Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.
Resumo:
Intravaginal practices are commonly used by women to manage their vaginal health and sexual life. These practices could, however, affect intravaginal mucosal integrity. The objectives of this study were to examine evidence for associations between: intravaginal practices and acquisition of HIV infection; intravaginal practices and vaginal infections; and vaginal infections and HIV acquisition.