13 resultados para Operating system kernels
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
With research on Wireless Sensor Networks (WSNs) becoming more and more mature in the past five years, researchers from universities all over the world have set up testbeds of wireless sensor networks, in most cases to test and evaluate the real-world behavior of developed WSN protocol mechanisms. Although these testbeds differ heavily in the employed sensor node types and the general architectural set up, they all have similar requirements with respect to management and scheduling functionalities: as every shared resource, a testbed requires a notion of users, resource reservation features, support for reprogramming and reconfiguration of the nodes, provisions to debug and remotely reset sensor nodes in case of node failures, as well as a solution for collecting and storing experimental data. The TARWIS management architecture presented in this paper targets at providing these functionalities independent from node type and node operating system. TARWIS has been designed as a re-usable management solution for research and/or educational oriented research testbeds of wireless sensor networks, relieving researchers intending to deploy a testbed from the burden to implement their own scheduling and testbed management solutions from scratch.
Resumo:
In this paper we propose a new system that allows reliable acetabular cup placement when the THA is operated in lateral approach. Conceptually it combines the accuracy of computer-generated patient-specific morphology information with an easy-to-use mechanical guide, which effectively uses natural gravity as the angular reference. The former is achieved by using a statistical shape model-based 2D-3D reconstruction technique that can generate a scaled, patient-specific 3D shape model of the pelvis from a single conventional anteroposterior (AP) pelvic X-ray radiograph. The reconstructed 3D shape model facilitates a reliable and accurate co-registration of the mechanical guide with the patient’s anatomy in the operating theater. We validated the accuracy of our system by conducting experiments on placing seven cups to four pelvises with different morphologies. Taking the measurements from an image-free navigation system as the ground truth, our system showed an average accuracy of 2.1 ±0.7 o for inclination and an average accuracy of 1.2 ±1.4 o for anteversion.
Resumo:
OBJECTIVE: To assess the relationship between early laboratory parameters, disease severity, type of management (surgical or conservative) and outcome in necrotizing enterocolitis (NEC). STUDY DESIGN: Retrospective collection and analysis of data from infants treated in a single tertiary care center (1980 to 2002). Data were collected on disease severity (Bell stage), birth weight (BW), gestational age (GA) and pre-intervention laboratory parameters (leukocyte and platelet counts, hemoglobin, lactate, C-reactive protein). RESULTS: Data from 128 infants were sufficient for analysis. Factors significantly associated with survival were Bell stage (P<0.05), lactate (P<0.05), BW and GA (P<0.01, P<0.001, respectively). From receiver operating characteristics curves, the highest predictive value resulted from a score with 0 to 8 points combining BW, Bell stage, lactate and platelet count (P<0.001). At a cutoff level of 4.5 sensitivity and specificity for predicting survival were 0.71 and 0.72, respectively. CONCLUSION: Some single parameters were associated with poor outcome in NEC. Optimal risk stratification was achieved by combining several parameters in a score.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Resumo:
During endoscopic surgery, it is difficult to ascertain the anatomical landmarks once the anatomy is fiddled with or if the operating area is filled with blood. An augmented reality system will enhance the endoscopic view and further enable surgeons to view hidden critical structures or the results of preoperative planning.
Resumo:
In this paper, we present a novel technique for the removal of astigmatism in submillimeter-wave optical systems through employment of a specific combination of so-called astigmatic off-axis reflectors. This technique treats an orthogonally astigmatic beam using skew Gaussian beam analysis, from which an anastigmatic imaging network is derived. The resultant beam is considered truly stigmatic, with all Gaussian beam parameters in the orthogonal directions being matched. This is thus considered an improvement over previous techniques wherein a beam corrected for astigmatism has only the orthogonal beam amplitude radii matched, with phase shift and phase radius of curvature not considered. This technique is computationally efficient, negating the requirement for computationally intensive numerical analysis of shaped reflector surfaces. The required optical surfaces are also relatively simple to implement compared to such numerically optimized shaped surfaces. This technique is implemented in this work as part of the complete optics train for the STEAMR antenna. The STEAMR instrument is envisaged as a mutli-beam limb sounding instrument operating at submillimeter wavelengths. The antenna optics arrangement for this instrument uses multiple off-axis reflectors to control the incident radiation and couple them to their corresponding receiver feeds. An anastigmatic imaging network is successfully implemented into an optical model of this antenna, and the resultant design ensures optimal imaging of the beams to the corresponding feed horns. This example also addresses the challenges of imaging in multi-beam antenna systems.
Resumo:
BACKGROUND No reliable tool to predict outcome of acute kidney injury (AKI) exists. HYPOTHESIS A statistically derived scoring system can accurately predict outcome in dogs with AKI managed with hemodialysis. ANIMALS One hundred and eighty-two client-owned dogs with AKI. METHODS Logistic regression analyses were performed initially on clinical variables available on the 1st day of hospitalization for relevance to outcome. Variables with P< or = .1 were considered for further analyses. Continuous variables outside the reference range were divided into quartiles to yield quartile-specific odds ratios (ORs) for survival. Models were developed by incorporating weighting factors assigned to each quartile based on the OR, using either the integer value of the OR (Model A) or the exact OR (Models B or C, when the etiology was known). A predictive score for each model was calculated for each dog by summing all weighting factors. In Model D, actual values for continuous variables were used in a logistic regression model. Receiver-operating curve analyses were performed to assess sensitivities, specificities, and optimal cutoff points for all models. RESULTS Higher scores were associated with decreased probability of survival (P < .001). Models A, B, C, and D correctly classified outcomes in 81, 83, 87, and 76% of cases, respectively, and optimal sensitivities/specificities were 77/85, 81/85, 83/90 and 92/61%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The models allowed outcome prediction that corresponded with actual outcome in our cohort. However, each model should be validated further in independent cohorts. The models may also be useful to assess AKI severity.
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accuracy
Resumo:
This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640.
Resumo:
BACKGROUND: We evaluated Swiss slaughterhouse data for integration in a national syndromic surveillance system for the early detection of emerging diseases in production animals. We analysed meat inspection data for cattle, pigs and small ruminants slaughtered between 2007 and 2012 (including emergency slaughters of sick/injured animals); investigating patterns in the number of animals slaughtered and condemned; the reasons invoked for whole carcass condemnations; reporting biases and regional effects. RESULTS: Whole carcass condemnation rates were fairly uniform (1-2‰) over time and between the different types of production animals. Condemnation rates were much higher and less uniform following emergency slaughters. The number of condemnations peaked in December for both cattle and pigs, a time when individuals of lower quality are sent to slaughter when hay and food are limited and when certain diseases are more prevalent. Each type of production animal was associated with a different profile of condemnation reasons. The most commonly reported one was "severe lesions" for cattle, "abscesses" for pigs and "pronounced weight loss" for small ruminants. These reasons could constitute valuable syndromic indicators as they are unspecific clinical manifestations of a large range of animal diseases (as well as potential indicators of animal welfare). Differences were detected in the rate of carcass condemnation between cantons and between large and small slaughterhouses. A large percentage (>60% for all three animal categories) of slaughterhouses operating never reported a condemnation between 2007 and 2012, a potential indicator of widespread non-reporting bias in our database. CONCLUSIONS: The current system offers simultaneous coverage of cattle, pigs and small ruminants for the whole of Switzerland; and traceability of each condemnation to its farm of origin. The number of condemnations was significantly linked to the number of slaughters, meaning that the former should be always be offset by the later in analyses. Because this denominator is only communicated at the end of the month, condemnations may currently only be monitored on a monthly basis. Coupled with the lack of timeliness (30-60 days delay between condemnation and notification), this limits the use of the data for early-detection.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.
Resumo:
Heater-cooler units (HCUs) were recently identified as a source of Mycobacterium chimaera causing surgical site infections. We investigated transmission of this bacterium from HCUs to the surgical field by using a thermic anemometer and particle counter, videotape of an operating room equipped with an ultraclean laminar airflow ventilation system, and bacterial culture sedimentation plates in a nonventilated room. Smoke from the HCU reached the surgical field in 23 s by merging with ultraclean air. The HCU produced on average 5.2, 139, and 14.8 particles/min in the surgical field at positions Off, On/oriented toward, and On/oriented away, respectively. Culture plates were positive for M. chimaera <5 m from the HCU in the test room. These experiments confirm airborne transmission of M. chimaera aerosols from a contaminated HCU to an open surgical field despite ultraclean air ventilation. Efforts to mitigate infectious risks during surgery should consider contamination from water sources and airflow-generating devices.