24 resultados para OPERATIONAL RESEARCH

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND HIV-1 RNA viral load (VL) testing is recommended to monitor antiretroviral therapy (ART) but not available in many resource-limited settings. We developed and validated CD4-based risk charts to guide targeted VL testing. METHODS We modeled the probability of virologic failure up to 5 years of ART based on current and baseline CD4 counts, developed decision rules for targeted VL testing of 10%, 20%, or 40% of patients in 7 cohorts of patients starting ART in South Africa, and plotted cutoffs for VL testing on colour-coded risk charts. We assessed the accuracy of risk chart-guided VL testing to detect virologic failure in validation cohorts from South Africa, Zambia, and the Asia-Pacific. RESULTS In total, 31,450 adult patients were included in the derivation and 25,294 patients in the validation cohorts. Positive predictive values increased with the percentage of patients tested: from 79% (10% tested) to 98% (40% tested) in the South African cohort, from 64% to 93% in the Zambian cohort, and from 73% to 96% in the Asia-Pacific cohort. Corresponding increases in sensitivity were from 35% to 68% in South Africa, from 55% to 82% in Zambia, and from 37% to 71% in Asia-Pacific. The area under the receiver operating curve increased from 0.75 to 0.91 in South Africa, from 0.76 to 0.91 in Zambia, and from 0.77 to 0.92 in Asia-Pacific. CONCLUSIONS CD4-based risk charts with optimal cutoffs for targeted VL testing maybe useful to monitor ART in settings where VL capacity is limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with scheduling batch (i.e., discontinuous), continuous, and semicontinuous production in process industries (e.g., chemical, pharmaceutical, or metal casting industries) where intermediate storage facilities and renewable resources (processing units and manpower) of limited capacity have to be observed. First, different storage configurations typical of process industries are discussed. Second, a basic scheduling problem covering the three above production modes is presented. Third, (exact and truncated) branch-and-bound methods for the basic scheduling problem and the special case of batch scheduling are proposed and subjected to an experimental performance analysis. The solution approach presented is flexible and in principle simple, and it can (approximately) solve relatively large problem instances with sufficient accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a real-world scheduling problem arising in the context of a rolling ingots production. First we review the production process and discuss peculiarities that have to be observed when scheduling a given set of production orders on the production facilities. We then show how to model this scheduling problem using prescribed time lags between operations, different kinds of resources, and sequence-dependent changeovers. A branch-and-bound solution procedure is presented in the second part. The basic principle is to relax the resource constraints by assuming infinite resource availability. Resulting resource conflicts are then stepwise resolved by introducing precedence relationships among operations competing for the same resources. The algorithm has been implemented as a beam search heuristic enumerating alternative sets of precedence relationships.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-known data mining algorithms rely on inputs in the form of pairwise similarities between objects. For large datasets it is computationally impossible to perform all pairwise comparisons. We therefore propose a novel approach that uses approximate Principal Component Analysis to efficiently identify groups of similar objects. The effectiveness of the approach is demonstrated in the context of binary classification using the supervised normalized cut as a classifier. For large datasets from the UCI repository, the approach significantly improves run times with minimal loss in accuracy.