7 resultados para Nonlinear integral equations.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this talk, we present a coupled system of integral equations for the πN → πN (s-channel) and ππ → N̅N (t-channel) lowest partial waves, derived from Roy–Steiner equations for pion–nucleon scattering. After giving a brief overview of this system of equations, we present the solution of the t-channel sub-problem by means of Muskhelishvili–Omnès techniques, and solve the s-channel sub-problem after finding a set of phase shifts and subthreshold parameters which satisfy the Roy–Steiner equations.
Resumo:
We present a coupled system of integral equations for the pp → ¯NN and ¯K K → ¯N N S-waves derived from Roy–Steiner equations for pion–nucleon scattering. We discuss the solution of the corresponding two-channel Muskhelishvili–Omnès problem and apply the results to a dispersive analysis of the scalar form factor of the nucleon fully including ¯KK intermediate states. In particular, we determine the corrections Ds and DD, which are needed for the extraction of the pion– nucleon s term from pN scattering, and show that the difference DD −Ds = (−1.8±0.2)MeV is insensitive to the input pN parameters.
Resumo:
We establish the convergence of pseudospectra in Hausdorff distance for closed operators acting in different Hilbert spaces and converging in the generalised norm resolvent sense. As an assumption, we exclude the case that the limiting operator has constant resolvent norm on an open set. We extend the class of operators for which it is known that the latter cannot happen by showing that if the resolvent norm is constant on an open set, then this constant is the global minimum. We present a number of examples exhibiting various resolvent norm behaviours and illustrating the applicability of this characterisation compared to known results.
Resumo:
The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.
Resumo:
This article centers on the computational performance of the continuous and discontinuous Galerkin time stepping schemes for general first-order initial value problems in R n , with continuous nonlinearities. We briefly review a recent existence result for discrete solutions from [6], and provide a numerical comparison of the two time discretization methods.