6 resultados para Newton-Krylov
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.
Resumo:
In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples
Resumo:
We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.