4 resultados para Negative Constant Curvature

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Justification logics are modal logics that include justifications for the agent's knowledge. So far, there are no decidability results available for justification logics with negative introspection. In this paper, we develop a novel model construction for such logics and show that justification logics with negative introspection are decidable for finite constant specifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article provides importance sampling algorithms for computing the probabilities of various types ruin of spectrally negative Lévy risk processes, which are ruin over the infinite time horizon, ruin within a finite time horizon and ruin past a finite time horizon. For the special case of the compound Poisson process perturbed by diffusion, algorithms for computing probabilities of ruins by creeping (i.e. induced by the diffusion term) and by jumping (i.e. by a claim amount) are provided. It is shown that these algorithms have either bounded relative error or logarithmic efficiency, as t,x→∞t,x→∞, where t>0t>0 is the time horizon and x>0x>0 is the starting point of the risk process, with y=t/xy=t/x held constant and assumed either below or above a certain constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article provides an importance sampling algorithm for computing the probability of ruin with recuperation of a spectrally negative Lévy risk process with light-tailed downwards jumps. Ruin with recuperation corresponds to the following double passage event: for some t∈(0,∞)t∈(0,∞), the risk process starting at level x∈[0,∞)x∈[0,∞) falls below the null level during the period [0,t][0,t] and returns above the null level at the end of the period tt. The proposed Monte Carlo estimator is logarithmic efficient, as t,x→∞t,x→∞, when y=t/xy=t/x is constant and below a certain bound.