21 resultados para Nanoscale electronic properties

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The supramolecular organization of fluorene building blocks in a DNA scaffold is described. The molecular assembly into ordered pi-aggregates leads to distinct changes in the electronic properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A tetrathiafulvalene donor has been attached to the naphthalene diimide core via a rigid bridge affording a new planar molecular dyad. Its electronic properties have been studied experimentally by the combination of electrochemistry and UV-vis-NIR spectroscopy. Various electronic excited charge-transfer states are generated in different oxidation states, leading to almost full absorption in the visible to near-IR region with high extinction coefficients. The observed electronic properties are explained on the basis of density-functional-theory. In particular, the oxidized radical species show a strong tendency to undergo aggregation, in which the long-distance attractive interactions overcome the electrostatic repulsions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Highly selective formation of 2+2 macrocycle 1 from 2,5-bis(3-formyl-2-hydroxyphenyl)-1,3,4-oxadiazole and a diamine-functionalized tetrathiafulvalene derivative is reported. Its electronic properties have been studied experimentally by the combination of electrochemistry and UV-vis-NIR spectroscopy. Particularly, its largely extended pi-conjugation renders this novel macrocycle simultaneously a good multielectron donor and a strong chromophore, which is rationalized on the basis of density functional theory. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A tetrathiafulvalene donor has been annulated to the bay region of perylenediimide through a 1H-benzo-[d]pyrrolo[1,2-a]imidazol-1-one spacer affording an extended pi-conjugated molecular dyad (TTF-PDI). To gain insight into its ground- and excited-state electronic properties, the reference compound Ph-PDI has been prepared via a direct Schiff-base condensation of N,N'-bis(1-octylnonyl) benzoperylene-1',2':3,4:9,10-hexacarboxylic-1',2'-anhydride-3,4:9,10-bis (imide) with benzene-1,2-diamine. Both the experimental and the computational (DFT) results indicate that TTF-PDI exhibits significant intramolecular electronic interactions giving rise to an efficient photoinduced charge-separation process. Free-energy calculations verify that the process from TTF to the singlet-excited state of PDI is exothermic in both polar and nonpolar solvents. Fast adiabatic electron-transfer processes of a compactly fused, pi-conjugated TTF-PDI dyad in benzonitrile, 2-methyltetrahydrofuran, anisole and toluene were observed by femtosecond transient absorption spectral measurements. The lifetimes of radical-ion pairs slightly increase with decreasing the solvent polarities, suggesting that the charge-recombination occurs in the Marcus inverted region. By utilizing the nanosecond transient absorption technique, the intermolecular electron-transfer process in a mixture of has been observed via the triplet excited PDI for the first time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB-TTF) central core and a 2,1,3-chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB-TTF, have been synthesised as active materials for organic field-effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron-withdrawing 2,1,3-chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution-processed single-crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V−1 s−1 as well as good ambient stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA duplexes containing unnatural base-pair surrogates are attractive biomolecular nanomaterials with potentially beneficial photophysical or electronic properties. Herein we report the first X-ray structure of a duplex containing a phen-pair in the center of the double helix in a zipper like stacking arrangement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electronic tuning effects of substituents at the 4- and 8-positions of benzothiadiazole (BTD) within the fused tetrathiafulvalene–BTD donor–acceptor dyad have been studied. The electron acceptor strength of BTD is greatly increased by replacing Br with CN groups, extending the optical absorption of the small dyad into the near-IR region and importantly, the charge transport can be switched from p-type to ambipolar behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation into the physical consequences of including a Jahn-Teller distorted Cu(II) ion within an antiferromagnetically coupled ring, [R(2)NH(2)][Cr(7)CuF(8)((O(2)C(t)Bu)(16))] is reported. Inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) spectroscopic data are simulated using a microscopic spin Hamiltonian, and show that the two Cr-Cu exchange interactions must be inequivalent. One Cr-Cu exchange is found to be antiferromagnetic and the other ferromagnetic. The geometry of the Jahn-Teller elongation is deduced from these results, and shows that a Jahn-Teller elongation axis must lie in the plane of the Cr(7)Cu wheel; the elongation is not observed by X-ray crystallography, due to positional disorder of the Cu site within the wheel. An electronic structure calculation confirms the structural distortion of the Cu site.