185 resultados para Multi-slice computed tomography
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
As an Alpine country, Switzerland has not only a thriving mountaineering tourist industry, but also many mountaineering casualties. At the request of the state attorney, most of the victims undergo only an external inspection without autopsy. One of the main tasks of the forensic pathologist under these circumstances is the correct identification of the deceased for a fast release to their kin. Nevertheless, detailed knowledge of the injuries sustained may lead to improved safety measures, such as better protective equipment. In this study, we examined the feasibility of using cross-sectional imaging with postmortem multi-slice computed tomography (MSCT) to detect lesions of the skeletal structures and internal organs. For this purpose, we used whole-body MSCT to examine 10 corpses that suffered fatal falls from great height while climbing in the Swiss part of the European Alps from the years 2007 to 2009. We conclude that postmortem CT imaging is a valuable tool for dental identification and is superior to plain X-rays as a viable compromise between a solely external legal inspection and an autopsy because it delivers otherwise irretrievable additional internal findings non-invasively. This fact is of great importance in cases where an autopsy is refused.
Resumo:
Descending cerebellar tonsillar herniation is a serious and common complication of intracranial mass lesions. We documented three cases of fatal blunt head injury using post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI). The results showed massive bone and soft-tissue injuries of the head and signs of high intracranial pressure with herniation of the cerebellar tonsils. The diagnosis of tonsillar herniation by post-mortem radiological examination was performed prior to autopsy. This paper describes the detailed retrospective evaluation of the position of the cerebellar tonsils in post-mortem imaging in comparison to clinical studies.
Resumo:
AIMS Transcatheter mitral valve replacement (TMVR) is an emerging technology with the potential to treat patients with severe mitral regurgitation at excessive risk for surgical mitral valve surgery. Multimodal imaging of the mitral valvular complex and surrounding structures will be an important component for patient selection for TMVR. Our aim was to describe and evaluate a systematic multi-slice computed tomography (MSCT) image analysis methodology that provides measurements relevant for transcatheter mitral valve replacement. METHODS AND RESULTS A systematic step-by-step measurement methodology is described for structures of the mitral valvular complex including: the mitral valve annulus, left ventricle, left atrium, papillary muscles and left ventricular outflow tract. To evaluate reproducibility, two observers applied this methodology to a retrospective series of 49 cardiac MSCT scans in patients with heart failure and significant mitral regurgitation. For each of 25 geometrical metrics, we evaluated inter-observer difference and intra-class correlation. The inter-observer difference was below 10% and the intra-class correlation was above 0.81 for measurements of critical importance in the sizing of TMVR devices: the mitral valve annulus diameters, area, perimeter, the inter-trigone distance, and the aorto-mitral angle. CONCLUSIONS MSCT can provide measurements that are important for patient selection and sizing of TMVR devices. These measurements have excellent inter-observer reproducibility in patients with functional mitral regurgitation.
Resumo:
Modern imaging technologies, such as computed tomography (CT) techniques, represent a great challenge in forensic pathology. The field of forensics has experienced a rapid increase in the use of these new techniques to support investigations on critical cases, as indicated by the implementation of CT scanning by different forensic institutions worldwide. Advances in CT imaging techniques over the past few decades have finally led some authors to propose that virtual autopsy, a radiological method applied to post-mortem analysis, is a reliable alternative to traditional autopsy, at least in certain cases. The authors investigate the occurrence and the causes of errors and mistakes in diagnostic imaging applied to virtual autopsy. A case of suicide by a gunshot wound was submitted to full-body CT scanning before autopsy. We compared the first examination of sectional images with the autopsy findings and found a preliminary misdiagnosis in detecting a peritoneal lesion by gunshot wound that was due to radiologist's error. Then we discuss a new emerging issue related to the risk of diagnostic failure in virtual autopsy due to radiologist's error that is similar to what occurs in clinical radiology practice.
Resumo:
OBJECTIVES: This study sought to evaluate the diagnostic accuracy of coronary binary in-stent restenosis (ISR) with angiography using 64-slice multislice computed tomography coronary angiography (CTCA) compared with invasive coronary angiography (ICA). BACKGROUND: A noninvasive detection of ISR would result in an easier and safer way to conduct patient follow-up. METHODS: We performed CTCA in 81 patients after stent implantation, and 125 stented lesions were scanned. Two sets of images were reconstructed with different types of convolution kernels. On CTCA, neointimal proliferation was visually evaluated according to luminal contrast attenuation inside the stent. Lesions were graded as follows: grade 1, none or slight neointimal proliferation; grade 2, neointimal proliferation with no significant stenosis (<50%); grade 3, neointimal proliferation with moderate stenosis (> or =50%); and grade 4, neointimal proliferation with severe stenosis (> or =75%). Grades 3 and 4 were considered binary ISR. The diagnostic accuracy of CTCA compared with ICA was evaluated. RESULTS: By ICA, 24 ISRs were diagnosed. Sensitivity, specificity, positive predictive value, and negative predictive value were 92%, 81%, 54%, and 98% for the overall population, whereas values were 91%, 93%, 77%, and 98% when excluding unassessable segments (15 segments, 12%). For assessable segments, CTCA correctly diagnosed 20 of the 22 ISRs detected by ICA. Six lesions without ISR were overestimated as ISR by CTCA. As the grade of neointimal proliferation by CTCA increases, the median value of percent diameter stenosis increased linearly. CONCLUSIONS: Binary ISR can be excluded with high probability by CTCA, with a moderate rate of false-positive results.
Resumo:
BACKGROUND: Multislice computed tomography (MSCT) is a promising noninvasive method of detecting coronary artery disease (CAD). However, most data have been obtained in selected series of patients. The purpose of the present study was to investigate the accuracy of 64-slice MSCT (64 MSCT) in daily practice, without any patient selection. METHODS AND RESULTS: Using 64-slice MSCT coronary angiography (CTA), 69 consecutive patients, 39 (57%) of whom had previously undergone stent implantation, were evaluated. The mean heart rate during scan was 72 beats/min, scan time 13.6 s and the amount of contrast media 72 mL. The mean time span between invasive coronary angiography (ICAG) and CTA was 6 days. Significant stenosis was defined as a diameter reduction of > 50%. Of 966 segments, 884 (92%) were assessable. Compared with ICAG, the sensitivity of CTA to diagnose significant stenosis was 90%, specificity 94%, positive predictive value (PPV) 89% and negative predictive value (NPV) 95%. With regard to 58 stented lesions, the sensitivity, specificity, PPV and NPV were 93%, 96%, 87% and 98%, respectively. On the patient-based analysis, the sensitivity, specificity, PPV and NPV of CTA to detect CAD were 98%, 86%, 98% and 86%, respectively. Eighty-two (8%) segments were not assessable because of irregular rhythm, calcification or tachycardia. CONCLUSION: Sixty-four-MSCT has a high accuracy for the detection of significant CAD in an unselected patient population and therefore can be considered as a valuable noninvasive technique.
Resumo:
We aimed at assessing stent geometry and in-stent contrast attenuation with 64-slice CT in patients with various coronary stents. Twenty-nine patients (mean age 60 +/- 11 years; 24 men) with 50 stents underwent CT within 2 weeks after stent placement. Mean in-stent luminal diameter and reference vessel diameter proximal and distal to the stent were assessed with CT, and compared to quantitative coronary angiography (QCA). Stent length was also compared to the manufacturer's values. Images were reconstructed using a medium-smooth (B30f) and sharp (B46f) kernel. All 50 stents could be visualized with CT. Mean in-stent luminal diameter was systematically underestimated with CT compared to QCA (1.60 +/- 0.39 mm versus 2.49 +/- 0.45 mm; P < 0.0001), resulting in a modest correlation of QCA versus CT (r = 0.49; P < 0.0001). Stent length as given by the manufacturer was 18.2 +/- 6.2 mm, correlating well with CT (18.5 +/- 5.7 mm; r = 0.95; P < 0.0001) and QCA (17.4 +/- 5.6 mm; r = 0.87; P < 0.0001). Proximal and distal reference vessel diameters were similar with CT and QCA (P = 0.06 and P = 0.03). B46f kernel images showed higher image noise (P < 0.05) and lower in-stent CT attenuation values (P < 0.001) than images reconstructed with the B30f kernel. 64-slice CT allows measurement of coronary artery in-stent density, and significantly underestimates the true in-stent diameter compared to QCA.
Resumo:
Apart from one article published by Rabl and Sigrist in 1992 (Rechtsmedizin 2:156-158), there are no further reports on secondary skull fractures in shots from captive bolt guns. Up to now, the pertinent literature places particular emphasis on the absence of indirect lesions away from the impact point, when dealing with the wounding capacity of slaughterer's guns. The recent observation of two suicidal head injuries accompanied by skull fractures far away from the bolt's path gave occasion to experimental studies using simulants (glycerin soap, balls from gelatin) and skull brain models. As far as ballistic soap was concerned, the dimensions of the bolt's channel were assessed by multi-slice computed tomography before cutting the blocks open. The test shots to gelatin balls and to skull-brain models were documented by means of a high-speed motion camera. As expected, the typical temporary cavity effect of bullets fired from conventional guns could not be observed when captive bolt stunners were discharged. Nevertheless, the visualized transfer of kinetic energy justifies the assumption that the secondary fractures seen in thin parts of the skull were caused by a hydraulic burst effect.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
Morphological findings in death due to hypothermia are variable and predominantly unspecific. Goal of this study was to check the usefulness of post-mortem cross-sectional imaging methods in the diagnosis of externally invisible findings in death due to hypothermia. Three consecutive forensic cases that died due to hypothermia were examined using post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) prior to autopsy. MSCT excluded traumatic skeletal and fatty tissue injury. Using MRI, it was possible to detect hemorrhages within the muscles of the back in all three cases, a so far unknown finding in death due to hypothermia. MRI also allowed the detection of hemorrhages in the iliopsoas muscles. Wishnewsky spots remained radiologically undetected using the present examination techniques. In conclusion, hemorrhages of the muscles of the back might serve as a new sign of death due to hypothermia; however, additional studies on their specificity are necessary. Post-mortem MRI is considered as a good diagnosing tool for muscular hemorrhages, with a great potential for examination and documentation.
Resumo:
OBJECTIVES In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results. METHODS Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans. RESULTS In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased. CONCLUSIONS Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.
Resumo:
Spontaneous pneumomediastinum commonly occurs in healthy young men or parturient women in whom an increased intra-alveolar pressure (Valsalva maneuver, asthma, cough, emesis) leads to the rupture of the marginal pulmonary alveoli. The air ascends along the bronchi to the mediastinum and the subcutaneous space of the neck, causing cervico-fascial subcutaneous emphysema in 70-90% of cases. Ninety-five forensic cases, including five cases of hanging, were examined using postmortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) prior to autopsy until December 2003. This paper describes the findings of pneumomediastinum and cervical emphysema in three of five cases of hanging. The mechanism of its formation is discussed based on these results and a review of the literature. In conclusion, when putrefaction gas can be excluded the findings of pneumomediastinum and cervical soft tissue emphysema serve as evidence of vitality of a hanged person. Postmortem cross-sectional imaging is considered a useful visualization tool for emphysema, with a great potential for examination and documentation.
Resumo:
Steamer accidents, through contact with the bucket wheel, are very seldom today. No publication of such a kind of fatal accident could be found in literature. We present the case of a fatal steamer accident, in which the findings of a blunt traumatization of a person by the ship was completely documented by post-mortem combined multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) examinations. A rupture of the aorta was detected using both radiological methods without use of radiopaque material. Radiological examination revealed a comminuted fracture of the thorax vertebrae at the same level as the aortic rupture. Injuries of the soft tissues of the back, caused by the bucket wheel of the steamer, were also diagnosed. In addition to the signs of blunt force trauma the findings of drowning such as an over inflation of the lungs, fluid in the stomach and duodenum were revealed. Furthermore, algological analysis detected diatoms in the lung tissue and blood from the left heart. Therefore, the cause of death was considered being a combination of fatal hemorrhage, caused by the aortic rupture, and drowning. We conclude that virtual autopsy using combined post-mortem MSCT and MRI is a useful tool for documentation, visualisation and analysis of the findings of blunt force trauma and drowning with a large potential in forensic medicine.
Resumo:
A man wearing no protective helmet was struck by a motor vehicle while riding a bicycle. He was loaded on his left side, and the impact point of his head was his occiput on the car roof girder. He was immediately transported to the general hospital, where he passed away. Postmortem examination using multi-slice computed tomography (MSCT) revealed an extensively comminuted fracture of the posterior part and the base of the skull. Observed were deep direct and contrecoup brain bruises, with the independent fractures of the roof of the both orbits. Massive subdural and subarachnoidal hemorrhage with cerebral edema and shifting of the mid-line towards left side were also detected. MSCT and autopsy results were compared and the body injuries were correlated to vehicle damages. In conclusion, postmortem imaging is a good forensic visualization tool with great potential for documentation and examination of body injuries and pathology.