8 resultados para Metaphyseal

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To report stabilization of closed, comminuted distal metaphyseal transverse fractures of the left tibia and fibula in a tiger using a hybrid circular-linear external skeletal fixator. STUDY DESIGN: Clinical report. ANIMAL: Juvenile tiger (15 months, 90 kg). METHODS: From imaging studies, the tiger had comminuted distal metaphyseal transverse fractures of the left tibia and fibula, with mild caudolateral displacement and moderate compression. Multiple fissures extended from the fractures through the distal metaphyses, extending toward, but not involving the distal tibial and fibular physes. A hybrid circular-linear external skeletal fixator was applied by closed reduction, to stabilize the fractures. RESULTS: The fractures healed and the fixator was removed 5 weeks after stabilization. Limb length and alignment were similar to the normal contralateral limb at hospital discharge, 8 weeks after surgery. Two weeks later, the tiger had fractures of the right tibia and fibula and was euthanatized. Necropsy confirmed pathologic fractures ascribed to copper deficiency. CONCLUSION: Closed application of the hybrid construct provided sufficient stability to allow this 90 kg tiger's juxta-articular fractures to heal with minimal complications and without disrupting growth from the adjacent physes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Osteoporosis is not only responsible for an increased number of metaphyseal and spinal fractures but it also complicates their treatment. To prevent the initial loosening, we developed a new implant with an enlarged implant/bone interface based on the concept of perforated, hollow cylinders. We evaluated whether osseointegration of a hollow cylinder based implant takes place in normal or osteoporotic bone of sheep under functional loading conditions during anterior stabilization of the lumbar spine. MATERIALS AND METHODS: Osseointegration of the cylinders and status of the fused segments (ventral corpectomy, replacement with iliac strut, and fixation with testing implant) were investigated in six osteoporotic (age 6.9 +/- 0.8 years, mean body weight 61.1 +/- 5.2 kg) and seven control sheep (age 6.1 +/- 0.2 years, mean body weight 64.9 +/- 5.7 kg). Osteoporosis was introduced using a combination protocol of ovariectomy, high-dose prednisone, calcium and phosphor reduced diet and movement restriction. Osseointegration was quantified using fluorescence and conventional histology; fusion status was determined using biomechanical testing of the stabilized segment in a six-degree-of-freedom loading device as well as with radiological and histological staging. RESULTS: Intact bone trabeculae were found in 70% of all perforations without differences between the two groups (P = 0.26). Inside the cylinders, bone volume/total volume was significantly higher than in the control vertebra (50 +/- 16 vs. 28 +/- 13%) of the same animal (P<0.01), but significantly less (P<0.01) than in the near surrounding (60 +/- 21%). After biomechanical testing as described in Sect. "Materials and methods", seven spines (three healthy and four osteoporotic) were classified as completely fused and six (four healthy and two osteoporotic) as not fused after a 4-month observation time. All endplates were bridged with intact trabeculae in the histological slices. CONCLUSIONS: The high number of perforations, filled with intact trabeculae, indicates an adequate fixation; bridging trabeculae between adjacent endplates and tricortical iliac struts in all vertebrae indicates that the anchorage is adequate to promote fusion in this animal model, even in the osteoporotic sheep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signal changes within the bone marrow adjacent to osteoarthritic joints are commonly seen on magnetic resonance (MR) images in humans and in dogs. The histological nature of these lesions is poorly known. In this study, we describe the MR imaging of bone marrow lesions adjacent to the stifle joints of dogs with experimental osteoarthritis over 13 months. Histology of the proximal tibia at the end of the study was compared with the last MR imaging findings. In five adult dogs, the left cranial cruciate ligament was transected. Post-operatively, MR imaging was performed at 1, 2, 3, 4, 6, 8, and 13 months. Dogs were euthanised after 13 months and histological specimen of the proximal tibia were evaluated. Bone marrow edema like MR imaging signal changes were seen in every MR examination of all dogs in one or more locations of the proximal tibia and the distal femur. Lesions varied in size and location throughout the whole study with the exception of constantly seen lesions in the epiphyseal and metaphyseal region at the level of the tibial eminence. On histology, hematopoiesis and myxomatous transformation of the bone marrow and/or intertrabecular fibrosis without signs of bone marrow edema were consistent findings in the areas corresponding to the MR imaging signal changes. We conclude that within the bone marrow, zones of increased signal intensity on fat suppressed MR images do not necessarily represent edema but can be due to cellular infiltration. Contrary to humans, hematopoiesis is seen in bone marrow edema-like lesions in this canine model of osteoarthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blood perfusion to the femoral head might be endangered during the surgical approach or the preparation of the femoral head or both in hip resurfacing arthroplasty. The contribution of the intramedullary blood supply to the femoral head in osteoarthritis is questionable. Therefore, the contribution of the extraosseous blood supply to osteoarthritic femoral heads was measured intraoperatively to question if there is measurable blood flow between the epiphysis and metaphysis in osteoarthritic hips in case of extraosseus vessel damage. At defined points during surgery we acquired the epiphyseal and metaphyseal femoral head perfusion by high-energy laser Doppler flowmetry. Complete femoral neck osteotomy sparing the retinacular vessels to simulate intraosseous blood disruption showed unchanged epiphyseal blood flow compared to initial measurement after capsulotomy. The pulsatile signal disappeared after transection of the retinacular vessels. Based on these acute measurements, we conclude intramedullary blood vessels to the femoral head do not provide measurable blood supply to the epiphysis once the medial femoral circumflex artery or the retinacular vessels have been damaged. We recommend the use of a safe surgical approach for hip resurfacing and careful implantation of the femoral component to respect blood supply to the femoral head and neck region in hip resurfacing arthroplasty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Femoroacetabular impingement due to metaphyseal prominence is associated with the slippage in patients with slipped capital femoral epiphysis (SCFE), but it is unclear whether the changes in femoral metaphysis morphology are associated with range of motion (ROM) changes or type of impingement. We asked whether the femoral head-neck junction morphology influences ROM analysis and type of impingement in addition to the slip angle and the acetabular version. We analyzed in 31 patients with SCFE the relationship between the proximal femoral morphology and limitation in ROM due to impingement based on simulated ROM of preoperative CT data. The ROM was analyzed in relation to degree of slippage, femoral metaphysis morphology, acetabular version, and pathomechanical terms of "impaction" and "inclusion." The ROM in the affected hips was comparable to that in the unaffected hips for mild slippage and decreased for slippage of more than 30 degrees. The limitation correlated with changes in the metaphysic morphology and changed acetabular version. Decreased head-neck offset in hips with slip angles between 30 degrees and 50 degrees had restricted ROM to nearly the same degree as in severe SCFE. Therefore, in addition to the slip angle, the femoral metaphysis morphology should be used as criteria for reconstructive surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Operationsziel Geschlossene, anatomische Reposition und sichere Fixation von problematischen suprakondylären Typ-III- und Typ-IV-Humerusfrakturen, die mit den herkömmlichen Operationsmethoden nur schwierig geschlossen zu behandeln sind. Indikationen Gemäß der AO-Kinderklassifikation der suprakondylären Humerusfrakturen vom Typ III und IV: Frakturen, welche nicht geschlossen mittels üblicher Repositionsmethoden reponierbar sind sowie Frakturen, die nicht mittels der üblichen, gekreuzten perkutanen Kirschner-Draht-Technik zu fixieren sind. Bei schweren Schwellungszuständen, offener Fraktur oder initial neurologischen und/oder vaskulären Problemen („pulseless pink hand“) sowie bei mehrfachverletzten Kindern, welche eine optimale Rehabilitation benötigen und die Extremität gipsfrei sein sollte. Bei Kindern mit Komorbiditäten (z. B. Anfälle, Spastizität), die eine bessere Stabilität benötigen. Kontraindikationen Prinzipiell keine Kontraindikationen Operationstechnik Im nichtreponierten Zustand unter Durchleuchtungskontrolle Einbringen einer einzelnen Schanz-Schraube in den lateralen (radialen) Aspekt des distalen Fragments, welches sich in der streng seitlichen Röntgenprojektion als „Sand-Uhr“- bzw. Kreisform des Capitulum humeri darstellt. Je nach Größe dieses distalen Fragments kann die Schanz-Schraube rein epiphysär oder metaphysär liegen. Danach in absolut streng seitlicher Projektion des distalen Humerus im Bereich des meta-diaphysären Übergangs Einbohren einer 2. Schanz-Schraube unabhängig von der Ersten, die möglichst rechtwinklig zur Längsachse des Humerus in der a.-p.-Ebene zu liegen kommen sollte, um spätere Manipulationen mittels „Joy-Stick“-Technik zu erleichtern. Sind die beiden Schanz-Schrauben mehr oder weniger in beiden Ebenen parallel, so ist die Fraktur praktisch anatomisch reponiert. Nach erreichter Reposition Feinjustierung aller Achskomponenten. Sicherung der Flexion/Extension mittels einem von radial, distal eingebrachten sog. Anti-Rotations-Kirschner-Drahts, der die Stabilität signifikant erhöht und eine Drehung des distalen Fragments um die einzelne Schanz-Schraube verhindert. Postoperative Behandlung Keine zusätzliche Gipsruhigstellung notwendig. Es sollte eine funktionelle Nachbehandlung erfolgen. Ergebnisse Gemäß unserer Langzeitstudien bewegen die meisten Kinder bereits zum Zeitpunkt der ambulanten Pin-Entfernung in der Frakturambulanz ihren Ellbogen weitgehend normal. Bei einer Follow-up-Zeit über 40 Monate hatten 30/31 Kindern eine seitengleiche Achse und Beweglichkeit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractures of the growing bone require fixation techniques, which preclude any injury to the growth plate regions. This requirement is met by Elastic Stable Intramedullary Nails (ESIN) which are positioned between both metaphyseal regions. Pronounced malposition and/or shortening, open fractures and fractures with impending skin perforation are indications for clavicle nailing in adolescents. Retrograde nailing with two elastic nails, inserted from lateral, is the method of choice for stabilization of humerus fractures. In radial neck fractures with severe tilting of the radial head, a retrograde nail may reduce and fix the head. In Monteggia lesions, the ulna fracture is reduced and fixed with an antegrade nail. Forearm fractures with unacceptable axial deviation are reduced and fixed with one antegrade nail in the ulna and a retrograde nail in the radius. Ascending elastic nailing is done for femur shaft and proximal femur fractures. The medial and lateral entry sites are located above the distal physis. End caps are used to prevent shortening in spiral and multiple segment fractures. Fractures of the distal third of the femur are nailed in a descending technique. The entry sites of two nails are located on the lateral cortex below the greater trochanter. Combined tibia and fibula fractures, open fractures and unstable fracture types such as spiral and multifragmental tibia fractures are good indications for ESIN. Descending nailing is the method of choice. The nail entry points are medially and laterally distal to the apophysis of the proximal tibia. Thorough knowledge of each fracture type, fracture location and age specific healing pattern is necessary for safe and effective treatment of pediatric fractures