8 resultados para Measure Vertebral Rotation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
An examination chair to measure internal rotation of the hip in routine settings: a validation study
Resumo:
OBJECTIVE: To determine the performance of a newly developed examination chair as compared with the clinical standard of assessing internal rotation (IR) of the flexed hip with a goniometer.
METHODS: The examination chair allowed measurement of IR in a sitting position simultaneously in both hips, with hips and knees flexed 90 degrees, lower legs hanging unsupported and a standardized load of 5 kg applied to both ankles using a bilateral pulley system. Clinical assessment of IR was performed in supine position with hips and knees flexed 90 degrees using a goniometer. Within the framework of a population-based inception cohort study, we calculated inter-observer agreement in two samples of 84 and 64 consecutive, unselected young asymptomatic males using intra-class correlation coefficients (ICC) and determined the correlation between IR assessed with examination chair and clinical assessment.
RESULTS: Inter-observer agreement was excellent for the examination chair (ICC right hip, 0.92, 95% confidence interval [CI] 0.89-0.95; ICC left hip, 0.90, 95% CI 0.86-0.94), and considerably higher than that seen with clinical assessment (ICC right hip, 0.65, 95% CI 0.49-0.77; ICC left hip, 0.69, 95% CI 0.54-0.80, P for difference in ICC between examination chair and clinical assessment
Resumo:
This is a retrospective clinical, radiological and patient outcome assessment of 21 consecutive patients with King 1 idiopathic adolescent scoliosis treated by short anterior selective fusion of the major thoracolumbar/lumbar (TL/L) curve. Three-dimensional changes of both curves, changes in trunk balance and rib hump were evaluated. The minimal follow-up was 24 months (max. 83). The Cobb angle of the TL/L curve was 52 degrees (45-67 degrees) with a flexibility of 72% (40-100%). The average length of the main curve was 5 (3-8) segments. An average of 3 (2-4) segments was fused using rigid single rod implants with side-loading screws. The Cobb angle of the thoracic curve was 33 degrees (18-50 degrees) with a flexibility of 69% (29-100%). The thoracic curve in bending was less than 20 degrees in 17 patients, and 20-25 degrees in 4 patients. In the TL/L curve there was an improvement of the Cobb angle of 67%, of the apex vertebral rotation of 51% and of the apex vertebral translation of 74%. The Cobb angle of the thoracic curve improved 29% spontaneously. Shoulder balance improved significantly from an average preoperative imbalance of 14.5-3.1 mm at the last follow-up. Seventy-five percent of the patients with preoperative positive shoulder imbalance (higher on the side of the thoracic curve) had levelled shoulders at the last follow-up. C7 offset improved from a preoperative 19.8 (0-40) to 4.8 (0-18) mm at the last follow-up. There were no significant changes in rotation, translation of the thoracic curve and the clinical rib hump. There were no significant changes in thoracic kyphosis or lumbar lordosis. The average score of the SRS-24 questionnaire at the last follow-up was 91 points (max. 120). We conclude that short anterior selective fusion of the TL/L curve in King 1 scoliosis with a thoracic curve bending to 25 degrees or less (Type 5 according to Lenke classification) results in a satisfactory correction and a balanced spine. Short fusions leave enough mobile lumbar segments for the establishment of global spinal balance. A positive shoulder imbalance is not a contraindication for this procedure. Structural interbody grafts are not necessary to maintain lumbar lordosis.
Resumo:
Data on treatment of glucocorticoid-induced osteoporosis (GIO) in men are scarce. We performed a randomized, open-label trial in men who have taken glucocorticoids (GC) for ≥3 months, and had an areal bone mineral density (aBMD) T-score ≤ –1.5 standard deviations. Subjects received 20 μg/d teriparatide (n = 45) or 35 mg/week risedronate (n = 47) for 18 months. Primary objective was to compare lumbar spine (L1–L3) BMD measured by quantitative computed tomography (QCT). Secondary outcomes included BMD and microstructure measured by high-resolution QCT (HRQCT) at the 12th thoracic vertebra, biomechanical effects for axial compression, anterior bending, and axial torsion evaluated by finite element (FE) analysis from HRQCT data, aBMD by dual X-ray absorptiometry, biochemical markers, and safety. Computed tomography scans were performed at 0, 6, and 18 months. A mixed model repeated measures analysis was performed to compare changes from baseline between groups. Mean age was 56.3 years. Median GC dose and duration were 8.8 mg/d and 6.4 years, respectively; 39.1% of subjects had a prevalent fracture, and 32.6% received prior bisphosphonate treatment. At 18 months, trabecular BMD had significantly increased for both treatments, with significantly greater increases with teriparatide (16.3% versus 3.8%; p = 0.004). HRQCT trabecular and cortical variables significantly increased for both treatments with significantly larger improvements for teriparatide for integral and trabecular BMD and bone surface to volume ratio (BS/BV) as a microstructural measure. Vertebral strength increases at 18 months were significant in both groups (teriparatide: 26.0% to 34.0%; risedronate: 4.2% to 6.7%), with significantly higher increases in the teriparatide group for all loading modes (0.005 < p < 0.015). Adverse events were similar between groups. None of the patients on teriparatide but five (10.6%) on risedronate developed new clinical fractures (p = 0.056). In conclusion, in this 18-month trial in men with GIO, teriparatide showed larger improvements in spinal BMD, microstructure, and FE-derived strength than risedronate.
Resumo:
Abstract Introduction Vertebroplasty (VP) is a cost-efficient alternative to kyphoplasty; however, regarding safety and vertebral body (VB) height restoration, it is considered inferior. We assessed the safety and efficacy of VP in alleviating pain, improving quality of life (QoL) and restoring alignment. Methods In a prospective monocenter case series from May 2007 until July 2008, there were 1,408 vertebroplasties performed during 319 interventions in 306 patients with traumatic, lytic and osteoporotic fractures. The 249 interventions in 233 patients performed because of osteoporotic vertebral fractures were analyzed regarding demographics, treatment and radiographic details, pain alleviation (VAS), QoL improvement (NASS and EQ-5D), complications and predictors for new fractures requiring a reoperation. Results The osteoporotic patient sample consisted of 76.7% (179) females with a median age of 80 years. A total of 54 males had a median age of 77 years. On average, there were 1.8 VBs fractured and 5 VBs treated. The preoperative pain was assessed by the visual analog scale (VAS) and decreased from 54.9 to 40.4 pts after 2 months and 31.2 pts after 6 months. Accordingly, the QoL on the EQ-5D measure (−0.6 to 1) improved from 0.35 pts before surgery to 0.56 pts after 2 and to 0.68 pts after 6 months. The preoperative Beck Index (anterior height/posterior height) improved from a mean of 0.64 preoperative to 0.76 postoperative, remained stable at 2 months and slightly deteriorated to 0.72 at 6 months postoperatively. There were cement leakages in 26% of the fractured VBs and in 1.4% of the prophylactically cemented VBs; there were symptoms in 4.3%, and most of them were temporary hypotension and one pulmonary cement embolism that remained asymptomatic. The univariate regression model revealed a tendency for a reduced risk for new or refractures on radiographs (OR = 2.61, 95% CI 0.92–7.38, p = 0.12) and reoperations (OR = 2.9, 95% CI 0.94–8.949, p = 0.1) when prophylactic augmentation was performed. The final multivariate regression model revealed male patients to have an about three times higher refracture risk (radiographic) (OR = 2.78, p = 0.02) at 6 months after surgery. Patients with a lumbar index fracture had an about three to five times higher refracture/reoperation risk than patients with a thoracic (OR = 0.33/0.35, p = 0.009/0.01) or thoracolumbar (OR = 0.32/0.22, p = 0.099/0.01) index fracture. Conclusion If routinely used, VP is a safe and efficacious treatment option for osteoporotic vertebral fractures with regard to pain relief and improvement of the QoL. Even segmental realignment can be partially achieved with proper patient positioning. Certain patient or fracture characteristics increase the risk for early radiographic refractures or new fractures, or a reoperation; a consequent prophylactic augmentation showed protective tendencies, but the study was underpowered for a final conclusion.
Resumo:
We describe the multidisciplinary findings in a pre-Columbian mummy head from Southern Peru (Cahuachi, Nazca civilisation, radiocarbon dating between 120 and 750 AD) of a mature male individual (40-60 years) with the first two vertebrae attached in pathological position. Accordingly, the atlanto-axial transition (C1/C2) was significantly rotated and dislocated at 38° angle associated with a bulging brownish mass that considerably reduced the spinal canal by circa 60%. Using surface microscopy, endoscopy, high-resolution multi-slice computer tomography, paleohistology and immunohistochemistry, we identified an extensive epidural hematoma of the upper cervical spinal canal-extending into the skull cavity-obviously due to a rupture of the left vertebral artery at its transition between atlas and skull base. There were no signs of fractures of the skull or vertebrae. Histological and immunohistochemical examinations clearly identified dura, brain residues and densely packed corpuscular elements that proved to represent fresh epidural hematoma. Subsequent biochemical analysis provided no evidence for pre-mortal cocaine consumption. Stable isotope analysis, however, revealed significant and repeated changes in the nutrition during his last 9 months, suggesting high mobility. Finally, the significant narrowing of the rotational atlanto-axial dislocation and the epidural hematoma probably caused compression of the spinal cord and the medulla oblongata with subsequent respiratory arrest. In conclusion, we suggest that the man died within a short period of time (probably few minutes) in an upright position with the head rotated rapidly to the right side. In paleopathologic literature, trauma to the upper cervical spine has as yet only very rarely been described, and dislocation of the vertebral bodies has not been presented.
Resumo:
Background Finite element models of augmented vertebral bodies require a realistic modelling of the cement infiltrated region. Most methods published so far used idealized cement shapes or oversimplified material models for the augmented region. In this study, an improved, anatomy-specific, homogenized finite element method was developed and validated to predict the apparent as well as the local mechanical behavior of augmented vertebral bodies. Methods Forty-nine human vertebral body sections were prepared by removing the cortical endplates and scanned with high-resolution peripheral quantitative CT before and after injection of a standard and a low-modulus bone cement. Forty-one specimens were tested in compression to measure stiffness, strength and contact pressure distributions between specimens and loading-plates. From the remaining eight, fourteen cylindrical specimens were extracted from the augmented region and tested in compression to obtain material properties. Anatomy-specific finite element models were generated from the CT data. The models featured element-specific, density-fabric-based material properties, damage accumulation, real cement distributions and experimentally determined material properties for the augmented region. Apparent stiffness and strength as well as contact pressure distributions at the loading plates were compared between simulations and experiments. Findings The finite element models were able to predict apparent stiffness (R2 > 0.86) and apparent strength (R2 > 0.92) very well. Also, the numerically obtained pressure distributions were in reasonable quantitative (R2 > 0.48) and qualitative agreement with the experiments. Interpretation The proposed finite element models have proven to be an accurate tool for studying the apparent as well as the local mechanical behavior of augmented vertebral bodies.
Resumo:
Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.
Resumo:
Many studies investigated solar–terrestrial responses (thermal state, O₃ , OH, H₂O) with emphasis on the tropical upper atmosphere. In this paper the Focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) are investigated to study oscillations with the Focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼64 km) during the rising sun spot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations Support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing thesi-milarity of their temporal oscillations. The H₂O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to −0.3 to −0.4, and the Phase lag is 6–10 days at 0.04 hPa. The confidence level of the correlation is ≥99%. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photo dissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC)complete our study. More periods of high common wavelet power of H₂O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level)correlations occur intermittently in the 27 and 13-day band with variable Phase lock behavior. Large Lyman-α oscillations appeared after the solar super storm in July 2012 and the H₂O oscillations show a well pronounced anticorrelation. The competition between advective transport and photo dissociation loss of mesospheric water vapor may explain the sometimes variable Phase relationship of mesospheric H₂O and solar Lyman-α oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.