17 resultados para Maladaptive defense mechanisms

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological transport of intact proteins across epithelial cells has been documented for many absorptive and secretory tissues. Immunoglobulins were some of the earliest studied proteins in this category. The transcellular transport (transcytosis) of immunoglobulins in neonatal health and development has been recognized; the process is especially significant with ungulates because they do not transcytose immunoglobulins across the placenta to the neonate. Rather, they depend upon mammary secretion of colostrum and intestinal absorption of immunoglobulins in order to provide intestinal and systemic defense until the young ungulate develops its own humoral defense mechanisms. The neonatal dairy calf's ability to absorb immunoglobulins from colostrum is assisted by a ~24 h "open gut" phenomenon where large proteins pass the intestinal epithelial cells and enter the systemic system. However, a critical problem recognized for newborn dairy calves is that an optimum mass of colostrum Immunoglobulin G (IgG) needs to be absorbed within that 24 h window in order to provide maximal resistance to disease. Many calves do not achieve the optimum because of poor quality colostrum. While many studies have focused on calf absorption, the principal cause of the problem resides with the extreme variation (g to kg) in the mammary gland's capacity to transfer blood IgG1 into colostrum. Colostrum is a unique mammary secretory product that is formed during late pregnancy when mammary cells are proliferating and differentiating in preparation for lactation. In addition to the transcytosis of immunoglobulins, the mammary gland also concentrates a number of circulating hormones into colostrum. Remarkably, the mechanisms in the formation of colostrum in ungulates have been rather modestly studied. The mechanisms and causes of this variation in mammary gland transcytosis of IgG1 are examined, evaluated, and in some cases, explained

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhinovirus (RV)-induced pulmonary exacerbations are common in cystic fibrosis (CF) and have been associated with impaired virus clearance by the CF airway epithelium in vitro. Here, we assess in vivo the association of RV prevalence and load with antiviral defense mechanisms, airway inflammation, and lung function parameters in children with CF compared with a control group and children with other chronic respiratory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species-dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathophysiologic aspects of bacterial meningitis impose some specific requirements on successful antimicrobial therapy of this disease. Because infections of the subarachnoid space rapidly produce destruction of the brain tissue, treatment must be instituted as early as possible. In the subarachnoid space, efficient host defense mechanisms are absent, particularly at the start of the infection, and therefore antibiotics have to produce a bactericidal effect to eliminate the microorganisms. As animal studies indicate, only drug concentrations 20- to 100-fold higher than the minimal bactericidal concentration are effective in vivo. Because penetration of antibiotics to the site of infection is limited by the blood-brain barrier, the high cerebrospinal fluid concentrations necessary to kill the bacteria may be difficult to achieve and therapy may be limited by toxicity. Even with optimal antibiotic therapy, the morbidity and mortality remain high, and new therapeutic interventions are necessary and should be aimed at modifying selective components of the inflammatory process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rabbits models of bacterial meningitis have contributed substantially to our understanding of the disease, although the technical characteristics of these models only allow the study of specific aspects of the disease. Bacterial multiplication in the subarachnoidal space is not substantially influenced by host defense mechanisms, mainly because of the lack of sufficient amounts of specific antibodies and functional complement in infected CSF. The multiplying bacteria induce profound changes in the blood-brain barrier, an influx of serum proteins into the CSF and the invasion of polymorphonuclear leukocytes at the site of the infection. The presence of polymorphonuclear leukocytes in CSF not only appears to be of limited value in combating the infection, but also seems to produce deleterious effects on the central nervous system. Components of the leukocytes, such as unsaturated fatty acids, arachidonic metabolites and free oxygen radicals, may contribute to the profound hydrodynamic, structural and metabolic changes that are currently under study in experimental models of the disease. A better understanding of the pathophysiology of bacterial meningitis may allow us to design more effective therapeutic strategies and improve the outcome of this disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recurrent airway obstruction is one of the most common airway diseases affecting mature horses. Increased bronchoalveolar mucus, neutrophil accumulation in airways, and airway obstruction are the main features of this disease. Mucociliary clearance is a key component of pulmonary defense mechanisms. Cilia are the motile part of this system and a complex linear array of dynein motors is responsible for their motility by moving along the microtubules in the axonemes of cilia and flagella. We previously detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. The gene encoding DNAH3 is located in the peak of the detected QTL and encodes a dynein subunit. Therefore, we analysed this gene as a positional and functional candidate gene for RAO. In a mutation analysis of all 62 exons we detected 53 new polymorphisms including 7 non-synonymous variants. We performed an association study using 38 polymorphisms in a cohort of 422 animals. However, after correction for multiple testing we did not detect a significant association of any of these polymorphisms with RAO (P>0.05). Therefore, it seems unlikely that variants at the DNAH3 gene are responsible for the RAO QTL in European Warmblood horses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Roots play an important role for plant defence and resistance against pathogens and insect herbivores: They act as environmental sensors for space, nutrients and water, they are important biosynthetic sites of plant toxins, they can store assimilates for future regrowth, and they possess themselves a potent defensive system to fend off belowground attackers. Although roots are often seen as passive tissue that only delivers services to the rest of the plant, it is becoming increasingly evident that roots actively respond to environmental conditions and are a vital part of the plant’s signaling and perception machinery. This chapter summarizes what is known about roots as constituents of plant resistance and defense mechanisms, with a particular emphasis on signaling aspects. It also discusses how the increasing knowledge about roots can be used to help protect plants from harmful pests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Listeria (L.) monocytogenes causes fatal infections in many species including ruminants and humans. In ruminants, rhombencephalitis is the most prevalent form of listeriosis. Using multilocus variable number tandem repeat analysis (MLVA) we recently showed that L. monocytogenes isolates from ruminant rhombencephalitis cases are distributed over three genetic complexes (designated A, B and C). However, the majority of rhombencephalitis strains and virtually all those isolated from cattle cluster in MLVA complex A, indicating that strains of this complex may have increased neurotropism and neurovirulence. The aim of this study was to investigate whether ruminant rhombencephalitis strains have an increased ability to propagate in the bovine hippocampal brain-slice model and can be discriminated from strains of other sources. For this study, forty-seven strains were selected and assayed on brain-slice cultures, a bovine macrophage cell line (BoMac) and a human colorectal adenocarcinoma cell line (Caco-2). They were isolated from ruminant rhombencephalitis cases (n = 21) and other sources including the environment, food, human neurolisteriosis cases and ruminant/human non-encephalitic infection cases (n = 26). RESULTS All but one L. monocytogenes strain replicated in brain slices, irrespectively of the source of the isolate or MLVA complex. The replication of strains from MLVA complex A was increased in hippocampal brain-slice cultures compared to complex C. Immunofluorescence revealed that microglia are the main target cells for L. monocytogenes and that strains from MLVA complex A caused larger infection foci than strains from MLVA complex C. Additionally, they caused larger plaques in BoMac cells, but not CaCo-2 cells. CONCLUSIONS Our brain slice model data shows that all L. monocytogenes strains should be considered potentially neurovirulent. Secondly, encephalitis strains cannot be conclusively discriminated from non-encephalitis strains with the bovine organotypic brain slice model. The data indicates that MLVA complex A strains are particularly adept at establishing encephalitis possibly by virtue of their higher resistance to antibacterial defense mechanisms in microglia cells, the main target of L. monocytogenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver cirrhosis is associated with bacterial translocation (BT) and endotoxemia. Most translocating bacteria belong to the common intestinal microbiota, suggesting a breakdown of intestinal barrier function. We hypothesized that diminished mucosal antimicrobial host defense could predispose to BT. Two rodent models of portal hypertension with increased BT were used, CCl(4)-induced ascitic cirrhosis and 2-day portal vein-ligated (PVL) animals. BT was assessed by standard microbiological techniques on mesenteric lymph nodes. Total RNA was isolated systematically throughout the intestinal tract, and expression of Paneth cell α-cryptdins and β-defensins was determined by real-time quantitative polymerase chain reaction (qPCR). To determine functional consequences, mucosal antimicrobial activity was assessed with a fluorescence-activated cell sorting assay. BT was detectable in 40% of rats with cirrhosis. Compared with the group without BT, these animals exhibited diminished intestinal Paneth cell α-cryptdin 5 and 7 expression. In contrast, PVL was associated with BT in all animals but did not affect antimicrobial peptides. The decrease in Paneth cell antimicrobials was most pronounced in the ileum and the coecum. Other antimicrobials showed no changes or even an induction in the case of BT at different sites. Antimicrobial activity toward different commensal strains was reduced, especially in the distal ileum and the cecum in experimental cirrhosis with BT (excluding PVL). Conclusion: Compromised Paneth cell antimicrobial host defense seems to predispose to BT in experimental cirrhosis. Understanding this liver-gut axis including the underlying mechanisms could help us to find new treatment avenues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1-2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: In fast ball sports like beach volleyball, decision-making skills are a determining factor for excellent performance. The current investigation aimed to identify factors that influence the decisionmaking process in top-level beach volleyball defense in order to find relevant aspects for further research. For this reason, focused interviews with top players in international beach volleyball were conducted and analyzed with respect to decision-making characteristics. Design: Nineteen world-tour beach volleyball defense players, including seven Olympic or world champions, were interviewed, focusing on decision-making factors, gaze behavior, and interactions between the two. Methods: Verbal data were analyzed by inductive content analysis according to Mayring (2008). This approach allows categories to emerge from the interview material itself instead of forcing data into preset classifications and theoretical concepts. Results: The data analysis showed that, for top-level beach volleyball defense, decision making depends on opponent specifics, external context, situational context, opponent's movements, and intuition. Information on gaze patterns and visual cues revealed general tendencies indicating optimal gaze strategies that support excellent decision making. Furthermore, the analysis highlighted interactions between gaze behavior, visual information, and domain-specific knowledge. Conclusions: The present findings provide information on visual perception, domain-specific knowledge, and interactions between the two that are relevant for decision making in top-level beach volleyball defense. The results can be used to inform sports practice and to further untangle relevant mechanisms underlying decision making in complex game situations.