95 resultados para MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immunity. T-cell proliferation and differentiation to effector cells require increased glucose consumption, aerobic glycolysis and glutaminolysis. The effect of IDO on the above metabolic pathways was evaluated in alloreactive T-cells. Mixed lymphocyte reaction (MLR) in the presence or not of the IDO inhibitor, 1-DL-methyl-tryptophane (1-MT), was used. In MLRs, 1-MT decreased tryptophan consumption, increased cell proliferation, glucose influx and lactate production, whereas it decreased tricarboxylic acid cycle activity. In T-cells, from the two pathways that could sense tryptophan depletion, i.e. general control nonrepressed 2 (GCN2) kinase and mammalian target of rapamycin complex 1, 1-MT reduced only the activity of the GCN2 kinase. Additionally 1-MT treatment of MLRs altered the expression and/or the phosphorylation state of glucose transporter-1 and of key enzymes involved in glucose metabolism and glutaminolysis in alloreactive T-cells in a way that favors glucose influx, aerobic glycolysis and glutaminolysis. Thus in alloreactive T-cells, IDO through activation of the GCN2 kinase, decreases glucose influx and alters key enzymes involved in metabolism, decreasing aerobic glycolysis and glutaminolysis. Acting in such a way, IDO could be considered as a constraining factor for alloreactive T-cell proliferation and differentiation to effector T-cell subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial (VE)-cadherin is an essential protein of adherens junctions of endothelial cells and plays a pivotal role in vascular homeostasis. Mammalian target of rapamycin complex 2 (mTORC2) deficient mice display defects in fetal vascular development. Blocking mTOR or the upstream kinase phosphoinositide 3-kinase (PI3K) led to a dose-dependently decrease of the VE-cadherin mRNA and protein expression. Immunofluorescent staining showed a strongly decreased expression of VE-cadherin at the interface of human umbilical endothelial cells (HUVECs) followed by intercellular gap formation. Herewith, we demonstrated that the expression of VE-cadherin is dependent on mTOR and PI3K signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of cell growth, that is cell size, is largely controlled by mTOR (the mammalian target of rapamycin), a large serine/threonine protein kinase that regulates ribosome biogenesis and protein translation. mTOR activity is regulated both by the availability of growth factors, such as insulin/IGF-1 (insulin-like growth factor 1), and by nutrients, notably the supply of certain key amino acids. The last few years have seen a remarkable increase in our understanding of the canonical, growth factor-regulated pathway for mTOR activation, which is mediated by the class I PI3Ks (phosphoinositide 3-kinases), PKB (protein kinase B), TSC1/2 (the tuberous sclerosis complex) and the small GTPase, Rheb. However, the nutrient-responsive input into mTOR is important in its own right and is also required for maximal activation of mTOR signalling by growth factors. Despite this, the details of the nutrient-responsive signalling pathway(s) controlling mTOR have remained elusive, although recent studies have suggested a role for the class III PI3K hVps34. In this issue of the Biochemical Journal, Findlay et al. demonstrate that the protein kinase MAP4K3 [mitogen-activated protein kinase kinase kinase kinase-3, a Ste20 family protein kinase also known as GLK (germinal centre-like kinase)] is a new component of the nutrient-responsive pathway. MAP4K3 activity is stimulated by administration of amino acids, but not growth factors, and this is insensitive to rapamycin, most likely placing MAP4K3 upstream of mTOR. Indeed, MAP4K3 is required for phosphorylation of known mTOR targets such as S6K1 (S6 kinase 1), and overexpression of MAP4K3 promotes the rapamycin-sensitive phosphorylation of these same targets. Finally, knockdown of MAP4K3 levels causes a decrease in cell size. The results suggest that MAP4K3 is a new component in the nutrient-responsive pathway for mTOR activation and reveal a completely new function for MAP4K3 in promoting cell growth. Given that mTOR activity is frequently deregulated in cancer, there is much interest in new strategies for inhibition of this pathway. In this context, MAP4K3 looks like an attractive drug target since inhibitors of this enzyme should switch off mTOR, thereby inhibiting cell growth and proliferation, and promoting apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED The gastrin-releasing peptide receptor (GRPr) is overexpressed in prostate cancer and is an attractive target for radionuclide therapy. In addition, inhibition of the protein kinase mammalian target of rapamycin (mTOR) has been shown to sensitize various cancer cells to the effects of radiotherapy. METHODS To determine the effect of treatment with rapamycin and radiotherapy with a novel (177)Lu-labeled GRPr antagonist ((177)Lu-RM2, BAY 1017858) alone and in combination, in vitro and in vivo studies were performed using the human PC-3 prostate cancer cell line. PC-3 cell proliferation and (177)Lu-RM2 uptake after treatment with rapamycin were assessed in vitro. To determine the influence of rapamycin on (177)Lu-RM2 tumor uptake, in vivo small-animal PET studies with (68)Ga-RM2 were performed after treatment with rapamycin. To study the efficacy of (177)Lu-RM2 in vivo, mice with subcutaneous PC-3 tumors were treated with (177)Lu-RM2 alone or after pretreatment with rapamycin. RESULTS Stable expression of GRPr was maintained after rapamycin treatment with doses up to 4 mg/kg in vivo. Monotherapy with (177)Lu-RM2 at higher doses (72 and 144 MBq) was effective in inducing complete tumor remission in 60% of treated mice. Treatment with 37 MBq of (177)Lu-RM2 and rapamycin in combination led to significantly longer survival than with either agent alone. No treatment-related toxicity was observed. CONCLUSION Radiotherapy using a (177)Lu-labeled GRPr antagonist alone or in combination with rapamycin was efficacious in inhibiting in vivo tumor growth and may be a promising strategy for treatment of prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latrepirdine (Dimebon) is a pro-neurogenic, antihistaminic compound that has yielded mixed results in clinical trials of mild to moderate Alzheimer's disease, with a dramatically positive outcome in a Russian clinical trial that was unconfirmed in a replication trial in the United States. We sought to determine whether latrepirdine (LAT)-stimulated amyloid precursor protein (APP) catabolism is at least partially attributable to regulation of macroautophagy, a highly conserved protein catabolism pathway that is known to be impaired in brains of patients with Alzheimer's disease (AD). We utilized several mammalian cellular models to determine whether LAT regulates mammalian target of rapamycin (mTOR) and Atg5-dependent autophagy. Male TgCRND8 mice were chronically administered LAT prior to behavior analysis in the cued and contextual fear conditioning paradigm, as well as immunohistological and biochemical analysis of AD-related neuropathology. Treatment of cultured mammalian cells with LAT led to enhanced mTOR- and Atg5-dependent autophagy. Latrepirdine treatment of TgCRND8 transgenic mice was associated with improved learning behavior and with a reduction in accumulation of Aβ42 and α-synuclein. We conclude that LAT possesses pro-autophagic properties in addition to the previously reported pro-neurogenic properties, both of which are potentially relevant to the treatment and/or prevention of neurodegenerative diseases. We suggest that elucidation of the molecular mechanism(s) underlying LAT effects on neurogenesis, autophagy and behavior might warranty the further study of LAT as a potentially viable lead compound that might yield more consistent clinical benefit following the optimization of its pro-neurogenic, pro-autophagic and/or pro-cognitive activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnostics of pancreatic neuroendocrine tumors (PanNEN) have changed in recent years especially concerning the World Health Organization (WHO) classification, TNM staging and grading. Furthermore, some new prognostic and predictive immunohistochemical markers have been introduced. Most progress, however, has been made in the molecular pathogenesis of these neoplasms. Using next generation sequencing techniques, the mammalian target of rapamycin (mTOR) pathway, hypoxia and epigenetic changes were identified as key players in tumorigenesis. In this article the most important developments of morphological as well as immunohistochemical diagnostics together with the molecular background of PanNEN are summarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Definitive fate of the coronary endothelium after implantation of a drug-eluting stent remains unclear, but evidence has accumulated that treatment with rapamycin-eluting stents impairs endothelial function in human coronary arteries. The aim of our study was to demonstrate this phenomenon on functional, morphological and biochemical level in human internal thoracic arteries (ITA) serving as coronary artery model. METHODS After exposure to rapamycin for 20 h, functional activity of ITA rings was investigated using the organ bath technique. Morphological analysis was performed by scanning electron microscopy and evaluated by two independent observers in blinded fashion. For measurement of endothelial nitric oxide synthase (eNOS) release, mammalian target of rapamycin (mTOR) and protein kinase B (PKB) (Akt) activation, Western blotting on human mammary epithelial cells-1 and on ITA homogenates was performed. RESULTS Comparison of the acetylcholine-induced relaxation revealed a significant concentration-dependent decrease to 66 ± 7 % and 36 ± 7 % (mean ± SEM) after 20-h incubation with 1 and 10 μM rapamycin. Electron microscopic evaluation of the endothelial layer showed no differences between controls and samples exposed to 10 μM rapamycin. Western blots after 20-h incubation with rapamycin (10 nM-1 μM) revealed a significant and concentration-dependent reduction of p (Ser 1177)-eNOS (down to 38 ± 8 %) in human mammary epithelial cells (Hmec)-1. Furthermore, 1 μM rapamycin significantly reduced activation of p (Ser2481)-mTOR (58 ± 11 %), p (Ser2481)-mTOR (23 ± 4 %) and p (Ser473)-Akt (38 ± 6 %) in ITA homogenates leaving Akt protein levels unchanged. CONCLUSIONS The present data suggests that 20-h exposure of ITA rings to rapamycin reduces endothelium-mediated relaxation through down-regulation of Akt-phosphorylation via the mTOR signalling axis within the ITA tissue without injuring the endothelial cell layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence and prevalence of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have increased in the past 20 years. GEP-NETs are heterogeneous tumors, in terms of clinical and biological features, that originate from the pancreas or the intestinal tract. Some GEP-NETs grow very slowly, some grow rapidly and do not cause symptoms, and others cause hormone hypersecretion and associated symptoms. Most GEP-NETs overexpress receptors for somatostatins. Somatostatins inhibit the release of many hormones and other secretory proteins; their effects are mediated by G protein-coupled receptors that are expressed in a tissue-specific manner. Most GEP-NETs overexpress the somatostatin receptor SSTR2; somatostatin analogues are the best therapeutic option for functional neuroendocrine tumors because they reduce hormone-related symptoms and also have antitumor effects. Long-acting formulations of somatostatin analogues stabilize tumor growth over long periods. The development of radioactive analogues for imaging and peptide receptor radiotherapy has improved the management of GEP-NETs. Peptide receptor radiotherapy has significant antitumor effects, increasing overall survival times of patients with tumors that express a high density of SSTRs, particularly SSTR2 and SSTR5. The multi-receptor somatostatin analogue SOM230 (pasireotide) and chimeric molecules that bind SSTR2 and the dopamine receptor D2 are also being developed to treat patients with GEP-NETs. Combinations of radioactive labeled and unlabeled somatostatin analogues and therapeutics that inhibit other signaling pathways, such as mammalian target of rapamycin (mTOR) and vascular endothelial growth factor, might be the most effective therapeutics for GEP-NETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-melanoma skin cancers (NMSCs) are the most common malignancies after solid organ transplantation. Their incidence increases with time after transplantation. Calcineurin-inhibitors (CNIs) and azathioprine are known as skin neoplasia-initiating and -enhancing immunosuppressants. In contrast, increasing clinical experience suggests a relevant antiproliferative effect of mammalian target of rapamycin inhibitors, also named proliferation signal inhibitors (PSIs). We report the case of a cardiac allograft recipient with an impressive and consolidated reduction of recurrent NMSC, observed after conversion from CNI-therapy to a PSI-based protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sorafenib targets the Raf/mitogen-activated protein kinase, VEGF, and platelet-derived growth factor pathways and prolongs survival patients in advanced hepatocellular carcinoma (HCC). Everolimus inhibits the mammalian target of rapamycin, a kinase overactive in HCC. To investigate whether the antitumor effects of these agents are additive, we compared a combined and sequential treatment regimen of everolimus and sorafenib with monotherapy. After hepatic implantation of Morris Hepatoma (MH) cells, rats were randomly allocated to everolimus (5 mg/kg, 2×/week), sorafenib (7.5 mg/kg/d), combined everolimus and sorafenib, sequential sorafenib (2 weeks) then everolimus (3 weeks), or control groups. MRI quantified tumor volumes. Erk1/2, 4E-BP1, and their phosphorylated forms were quantified by immunoblotting. Angiogenesis was assessed in vitro by aortic ring and tube formation assays, and in vivo with Vegf-a mRNA and vascular casts. After 35 days, tumor volumes were reduced by 60%, 85%, and 55%, relative to controls, in everolimus, the combination, and sequential groups, respectively (P < 0.01). Survival was longest in the combination group (P < 0.001). Phosphorylation of 4E-BP1 and Erk1/2 decreased after everolimus and sorafenib, respectively. Angiogenesis decreased after all treatments (P < 0.05), although sorafenib increased Vegf-a mRNA in liver tumors. Vessel sprouting was abundant in control tumors, lower after sorafenib, and absent after the combination. Intussusceptive angiogenic transluminal pillars failed to coalesce after the combination. Combined treatment with everolimus and sorafenib exerts a stronger antitumoral effect on MH tumors than monotherapy. Everolimus retains antitumoral properties when administered sequentially after sorafenib. This supports the clinical use of everolimus in HCC, both in combination with sorafenib or after sorafenib.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-nephrotoxic immunosuppressive strategies that allow reduction of calcineurin-inhibitor exposure without compromising safety or efficacy remain a goal in kidney transplantation. Immunosuppression based on the mammalian-target-of-rapamycin inhibitor everolimus was assessed as a strategy for elimination of calcineurin-inhibitor exposure and optimisation of renal-graft function while maintaining efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid organ transplant recipients (SOTR) have an increased risk of skin cancer due to their long-term immunosuppressive state. As the number of these patients is increasing, as well as their life expectancy, it is important to discuss the screening and management of skin cancer in this group of patients. The role of the dermatologist, in collaboration with the transplant team, is important both before transplantation, where patients are screened for skin lesions and the individual risk for skin cancer development is assessed, and after transplantation. Posttransplant management consists of regular dermatological consultations (the frequency depends on different factors discussed below), where early skin cancer screening and management, as well as patient education on sun protective behavior is taught and enforced. Indeed, SOTR are very sensitive to sun damage due to their immunosuppressive state, leading to cumulative sun damage which results in field cancerization with numerous lesions such as in situ squamous cell carcinoma, actinic keratosis and Bowen's disease. These lesions should be recognized and treated as early as possible. Therapeutic options discussed will involve topical therapy, surgical management, adjustment of the patient's immunosuppressive therapy (i.e. reduction of immunosuppression and/or switch to mammalian target of rapamycin inhibitors) and chemoprevention with the retinoid acitretin, which reduces the recurrence rate of squamous cell carcinoma. The dermatological follow-up of SOTR should be integrated into the comprehensive posttransplant care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Mammalian target of rapamycin (mTOR) signalling is central in the activation of hepatic stellate cells (HSCs), the key source of extracellular matrix (ECM) in fibrotic liver. We tested the therapeutic potential of the mTOR inhibitor rapamycin in advanced cirrhosis. METHODS: Cirrhosis was induced by bile duct-ligation (BDL) or thioacetamide injections (TAA). Rats received oral rapamycin (0.5 mg/kg/day) for either 14 or 28 days. Untreated BDL and TAA-rats served as controls. Liver function was quantified by aminopyrine breath test. ECM and ECM-producing cells were quantified by morphometry. MMP-2 activity was measured by zymography. mRNA expression of procollagen-alpha1, transforming growth factor-beta1 (TGF-beta1) and beta2 was quantified by RT-PCR. RESULTS: Fourteen days of rapamycin improved liver function. Accumulation of ECM was decreased together with numbers of activated HSCs and MMP-2 activity in both animal models. TGF-beta1 mRNA was downregulated in TAA, TGF-beta2 mRNA was downregulated in BDL. 28 days of rapamycin treatment entailed a survival advantage of long-term treated BDL-rats. CONCLUSIONS: Low-dose rapamycin treatment is effectively antifibrotic and attenuates disease progression in advanced fibrosis. Our results warrant the clinical evaluation of rapamycin as an antifibrotic drug.