80 resultados para MAMMALIAN CIRCADIAN CLOCK
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The circadian clock orchestrates many aspects of human physiology, and disruption of this clock has been implicated in various pathologies, ranging from cancer to metabolic syndrome and diabetes. Although there is evidence that metabolism and the circadian clockwork are intimately linked on a transcriptional level, whether these effects are directly under clock control or are mediated by the rest-activity cycle and the timing of food intake is unclear. To answer this question, we conducted an unbiased screen in human subjects of the metabolome of blood plasma and saliva at different times of day. To minimize indirect effects, subjects were kept in a 40-h constant routine of enforced posture, constant dim light, hourly isocaloric meals, and sleep deprivation. Under these conditions, we found that ~15% of all identified metabolites in plasma and saliva were under circadian control, most notably fatty acids in plasma and amino acids in saliva. Our data suggest that there is a strong direct effect of the endogenous circadian clock on multiple human metabolic pathways that is independent of sleep or feeding. In addition, they identify multiple potential small-molecule biomarkers of human circadian phase and sleep pressure.
Resumo:
Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients.
Resumo:
Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.
Resumo:
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Resumo:
In the last decade, few areas of biology have been transformed as thoroughly as RNA molecular biology. Without any doubt, one of the most significant advances has been the discovery of small (20-30 nucleotide) noncoding RNAs that regulate genes and genomes. The effects of small RNAs on gene expression and control are generally inhibitory, and the corresponding regulatory mechanisms are therefore collectively subsumed under the heading of RNA silencing and/or RNA interference. Two primary categories of these small RNAs - short interfering RNAs (siRNAs) and microRNAs (miRNAs) - act in both somatic and germline lineages of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA and miRNA-based regulation has direct implications for fundamental biology as well as disease aetiology and treatment as it is discussed in this review on 'new techniques in molecular biology'.
Resumo:
Autoimmune and infectious diseases are associated with behavioral changes referred to as sickness behavior syndrome (SBS). In autoimmunity, the generation of anti-self T lymphocytes and autoantibodies critically involves binding of CD40 ligand on T-cells to its receptor CD40 on B-cells, dendritic cells and macrophages. Activation of CD40 leads to production of proinflammatory cytokines and, as shown here, induces SBS. Here we report that these behavioral changes depend on the expression of tumor necrosis factor alpha receptor 1 (TNFR1), but not on interleukin-1 receptor 1 or interleukin-6. Moreover, the intensity of SBS correlates with suppression of E-box controlled clock genes, including Dbp, and upregulation of Bmal1. However, the absence of TNFR1 does not interfere with the development of SBS and dysregulation of clock genes in mice treated with lipopolysaccharide. Thus, our results suggest that TNFR1 mediates SBS and dysregulation of clock genes in autoimmune diseases.
Resumo:
Tetracycline regulated ectopic gene expression is a widely used tool to study gene function. However, the tetracycline regulator (tetR) itself has been reported to cause certain phenotypic changes in mammalian cells. We, therefore, asked whether human myeloid U937 cells expressing the tetR in an autoregulated manner would exhibit alterations in gene expression upon removal of tetracycline.
Resumo:
Melatonin is an important endocrine signal for darkness in mammals. Transcriptional activation of the arylalkylamine-N-acetyltransferase gene encoding for the penultimate enzyme in melatonin synthesis drives the daily rhythm of the hormone in the pineal gland of rodents. Rhythmic arylalkylamine-N-acetyltransferase expression is controlled by the cAMP-signal transduction pathway and involves the activation of ?-adrenergic receptors and the inducible cAMP early repressor. In addition, the rat arylalkylamine-N-acetyltransferase promoter contains an E-box element which can interact with clock proteins. Moreover, the pineal gland of mice shows a circadian rhythm in clock proteins such as the transcriptional repressor Period1, which has been shown to control rhythmic gene expression in a variety of tissues. However, the role of Period1 in the regulation of pineal melatonin synthesis is still unknown. Therefore, circadian rhythms in arylalkylamine-N-acetyltransferase, ?-adrenergic receptor, and inducible cAMP early repressor mRNA levels (real time PCR), arylalkylamine-N-acetyltransferase enzyme activity (radiometric assay) and melatonin concentration radio immuno assay (RIA) were analyzed in the pineal gland of mice with a targeted deletion of the Period1 gene (Per1-/-) and the corresponding wildtype. In Per1-/- the amplitude in arylalkylamine-N-acetyltransferase expression was significantly elevated as compared to wildtype. In contrast, ?-adrenergic receptor and inducible cAMP early repressor mRNA levels were not affected by the Period1-deficiency. This indicates that the molecular clockwork alters the amplitude of arylalkylamine-N-acetyltransferase expression. In vitro, pineal glands of Per1-/- mice showed a day night difference in arylalkylamine-N-acetyltransferase expression with high levels at night. This suggests that a deficient in Period1 elicits similar effects as the activation of the cAMP-signal transduction pathway in wildtype mice.
Resumo:
The nonsense-mediated mRNA decay (NMD) pathway is responsible for the rapid degradation of eukaryotic mRNAs on which ribosomes fail to terminate translation properly. NMD thereby contributes to the elimination of aberrant mRNAs, improving the fidelity of gene expression, but also serves to regulate gene expression at the post-transcriptional level. Here we discuss recent evidence as to how and where mRNAs targeted to NMD are degraded in human cells. We discuss accumulating evidence that the decay step of human NMD can be initiated by two different mechanisms: either by SMG6-mediated endonucleolytic cleavage near the aberrant stop codon, or by deadenylation and decapping. While there is evidence that mRNAs targeted for NMD have the capacity to accumulate with other translationally repressed mRNAs in P-bodies, there is currently no evidence that this is required for the degradation of the NMD substrate. It therefore remains an open question whether NMD in human cells is restricted to a particular cellular location or whether it can be initiated wherever translation of the NMD substrate takes place
Understanding the mechanism of RNA degradation in the mammalian nonsense-mediated mRNA decay pathway