22 resultados para MAGNETIC-STRUCTURES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Polymeric two- and three-dimensional, homo- and heterometallic oxalatebridged coordination compounds offer exciting opportunities, mainly in the fields of molecular magnetism and photophysics. Given that a large variety of magnetic phenomena have been reported so far from these molecular magnets, very limited experience is gained from elastic neutron scattering experiments. Therefore, with two examples, we will address the topic of the elucidation of magnetic structures by means of the neutron scattering technique. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.
Resumo:
Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction.
Resumo:
Based on a synthetic strategy, extended anionic, homo and bimetallic oxalato-bridged transition-metal compounds with two (2D) and three-dimensional (3D) connectivities can be synthesized and crystallized. Thereby, the choice of the templating counterions will determine the crystal chemistry. Since the oxalato bridge is a mediator for both antiferro and ferromagnetic interactions between similar and dissimilar metal ions, long-range magnetic ordering will occur. Examples of the determination of magnetic structures in 2D and 3D compounds by means of elastic neutron scattering methods will be discussed. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.
Resumo:
OBJECTIVE: The voluntary control of micturition is believed to be integrated by complex interactions among the brainstem, subcortical areas and cortical areas. Several brain imaging studies using positron emission tomography (PET) have demonstrated that frontal brain areas, the limbic system, the pons and the premotor cortical areas were involved. However, the cortical and subcortical brain areas have not yet been precisely identified and their exact function is not yet completely understood. MATERIALS AND METHODS: This study used functional magnetic resonance imaging (fMRI) to compare brain activity during passive filling and emptying of the bladder. A cathetherism of the bladder was performed in seven healthy subjects (one man and six right-handed women). During scanning, the bladder was alternatively filled and emptied at a constant rate with bladder rincing solution. RESULTS: Comparison between passive filling of the bladder and emptying of the bladder showed an increased brain activity in the right inferior frontal gyrus, cerebellum, symmetrically in the operculum and mesial frontal. Subcortical areas were not evaluated. CONCLUSIONS: Our results suggest that several cortical brain areas are involved in the regulation of micturition.
Resumo:
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1–3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C–H⋯O contacts. In contrast to polymers 1–3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht−) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C–H⋯O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.
Resumo:
This paper describes the syntheses and characterization of two new copper(II) diphosphonates: [NH3(CH2)2NH3]2[Cu2(hedp)2]·H2O (1) and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (2) (hedp = 1-hydroxyethylidenediphosphonate). Both compounds exhibit similar one-dimensional linear chain structures. The symmetrical {Cu2(hedp)2} dimers are connected by edge-shared {CuO5} square pyramids and form infinite chains. The Cu(II) ions are alternately bridged by O–P–O groups and O atoms. The Cu–O–Cu angles are 95.8(1) and 96.1(1)° for 1 and 2, respectively. Their magnetic properties show moderately strong antiferromagnetic interactions in both compounds.
Magnetic resonance imaging features of orbital inflammation with intracranial extension in four dogs
Resumo:
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.
Resumo:
BACKGROUND: The pathology of restless legs syndrome (RLS) is still not understood. To investigate the pathomechanism of the disorder further we recorded a surface electromyogram (EMG) of the anterior tibial muscle during functional magnetic resonance imaging (fMRI) in patients with idiopathic RLS. METHODS: Seven subjects with moderate to severe RLS were investigated in the present pilot study. Patients were lying supine in the scanner for over 50min and were instructed not to move voluntarily. Sensory leg discomfort (SLD) was evaluated on a 10-point Likert scale. For brain image analysis, an algorithm for the calculation of tonic EMG values was developed. RESULTS: We found a negative correlation of tonic EMG and SLD (p <0.01). This finding provides evidence for the clinical experience that RLS-related subjective leg discomfort increases during muscle relaxation at rest. In the fMRI analysis, the tonic EMG was associated with activation in motor and somatosensory pathways and also in some regions that are not primarily related to motor or somatosensory functions. CONCLUSIONS: By using a newly developed algorithm for the investigation of muscle tone-related changes in cerebral activity, we identified structures that are potentially involved in RLS pathology. Our method, with some modification, may also be suitable for the investigation of phasic muscle activity that occurs during periodic leg movements.
Resumo:
Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.