14 resultados para Liposomal-praziquantel
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
pegylated liposomal doxorubicin (PLD) and bevacizumab are active agents in the treatment of metastatic breast cancer (MBC). We carried out a multicenter, single-arm phase II trial to evaluate the toxicity and efficacy of PLD and bevacizumab as first-line treatment in MBC patients.
Resumo:
Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.
Resumo:
There is no optimal treatment for breast cancers lacking estrogen (ER) and progesterone (PgR) receptors in elderly women with co-morbidities that prevent use of "standard chemotherapy regimens" such as AC or CMF. The CASA trial studied pegylated liposomal doxorubicin (PLD) and low dose, metronomic cyclophosphamide + methotrexate (CM) for older (>65), vulnerable women with operable, ER and PgR-negative breast cancer. After two years the trial closed early, due to slow and inadequate accrual, with 77 patients (38:PLD, 36:CM, 3:nil). Sixty-eight percent completed PLD; 83% completed CM (both 16 weeks). Patients on PLD reported worse quality of life, cognitive and physical functioning than non-PLD regimens (primarily CM). At a median follow-up of 42 months, 81% of randomized patients remained free of any breast cancer recurrence. Based on our limited experience, PLD and CM may be reasonable options for further study for elderly vulnerable patients with endocrine nonresponsive breast cancer.
Resumo:
Praziquantel (PZQ), prescribed as a racemic mixture, is the most readily available drug to treat schistosomiasis. In the present study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) based metabolomics was employed to decipher the metabolic pathways and enantioselective metabolic differences of PZQ. Many phase I and four new phase II metabolites were found in urine and feces samples of mice 24h after dosing, indicating that the major metabolic reactions encompassed oxidation, dehydrogenation, and glucuronidation. Differences in the formation of all these metabolites were observed between (R)-PZQ and (S)-PZQ. In an in vitro phase I incubation system, the major involvement of CYP3A, CYP2C9, and CYP2C19 in the metabolism of PZQ, and CYP3A, CYP2C9, and CYP2C19 exhibited different catalytic activity toward the PZQ enantiomers. Apparent Km and Vmax differences were observed in the catalytic formation of three mono-oxidized metabolites by CYP2C9 and CYP3A4 further supporting the metabolic differences for PZQ enantiomers. Molecular docking showed that chirality resulted in differences in substrate location and conformation, which likely accounts for the metabolic differences. In conclusion, in silico, in vitro, and in vivo methods revealed the enantioselective metabolic profile of praziquantel.
Resumo:
Context: Through overexpression and aberrant activation in many human tumors, the IGF system plays a key role in tumor development and tumor cell proliferation. Different strategies targeting IGF-I receptor (IGFI-R) have been developed, and recent studies demonstrated that combined treatments with cytostatic drugs enhance the potency of anti-IGFI-R therapies. Objective: The objective of the study was to examine the IGFI-R expression status in neuroendocrine tumors of the gastroenteropancreatic system (GEP-NETs) in comparison with healthy tissues and use potential overexpression as a target for novel anti-IGFI-R immunoliposomes. Experimental Design: A human tumor tissue array and samples from different normal tissues were investigated by immunohistochemistry. An IGFI-R antagonistic antibody (1H7) was coupled to the surface of sterically stabilized liposomes loaded with doxorubicin. Cell lines from different tumor entities were investigated for liposomal association studies in vitro. For in vivo experiments, neuroendocrine tumor xenografts were used for evaluation of pharmacokinetic and therapeutic properties of the novel compound. Results: Immunohistochemistry revealed significant IGFI-R overexpression in all investigated GEP-NETs (n = 59; staining index, 229.1 +/- 3.1%) in comparison with normal tissues (115.7 +/- 3.7%). Furthermore, anti-IGFI-R immunoliposomes displayed specific tumor cell association (44.2 +/- 1.6% vs. IgG liposomes, 0.8 +/- 0.3%; P < 0.0001) and internalization in human neuroendocrine tumor cells in vitro and superior antitumor efficacy in vivo (life span 31.5 +/- 2.2 d vs. untreated control, 19 +/- 0.6, P = 0.008). Conclusion: IGFI-R overexpression seems to be a common characteristic of otherwise heterogenous NETs. Novel anti-IGFI-R immunoliposomes have been developed and successfully tested in a preclinical model for human GEP-NETs. Moreover in vitro experiments indicate that usage of this agent could also present a promising approach for other tumor entities.
Resumo:
Mucormycosis is an emerging cause of infectious morbidity and mortality in patients with hematologic malignancies. However, there are no recommendations to guide diagnosis and management. The European Conference on Infections in Leukemia assigned experts in hematology and infectious diseases to develop evidence-based recommendations for the diagnosis and treatment of mucormycosis. The guidelines were developed using the evidence criteria set forth by the American Infectious Diseases Society and the key recommendations are summarized here. In the absence of validated biomarkers, the diagnosis of mucormycosis relies on histology and/or detection of the organism by culture from involved sites with identification of the isolate at the species level (no grading). Antifungal chemotherapy, control of the underlying predisposing condition, and surgery are the cornerstones of management (level A II). Options for first-line chemotherapy of mucormycosis include liposomal amphotericin B and amphotericin B lipid complex (level B II). Posaconazole and combination therapy of liposomal amphotericin B or amphotericin B lipid complex with caspofungin are the options for second line-treatment (level B II). Surgery is recommended for rhinocerebral and skin and soft tissue disease (level A II). Reversal of underlying risk factors (diabetes control, reversal of neutropenia, discontinuation/taper of glucocorticosteroids, reduction of immunosuppressants, discontinuation of deferroxamine) is important in the treatment of mucormycosis (level A II). The duration of antifungal chemotherapy is not defined but guided by the resolution of all associated symptoms and findings (no grading). Maintenance therapy/secondary prophylaxis must be considered in persistently immunocompromised patients (no grading).
Resumo:
Coproscopic examination of 505 dogs originating from the western or central part of Switzerland revealed the presence (prevalence data) of the following helminthes: Toxocara canis (7.1%), hookworms (6.9%), Trichuris vulpis (5.5%), Toxascaris leonina (1.3%), Taeniidae (1.3%), Capillaria spp. (0.8%), and Diphyllobothrium latum (0.4%). Potential risk factors for infection were identified by a questionnaire: dogs from rural areas significantly more often had hookworms and taeniid eggs in their feces when compared to urban family dogs. Access to small rodents, offal, and carrion was identified as risk factor for hookworm and Taeniidae, while feeding of fresh and uncooked meat did not result in higher prevalences for these helminths. A group of 111 dogs was treated every 3 months with a combined medication of pyrantel embonate, praziquantel, and febantel, and fecal samples were collected for coproscopy in monthly intervals. Despite treatment, the yearly incidence of T. canis was 32%, while hookworms, T. vulpis, Capillaria spp., and Taeniidae reached incidences ranging from 11 to 22%. Fifty-seven percent of the 111 dogs had helminth eggs in their feces at least once during the 1-year study period. This finding implicates that an infection risk with potential zoonotic pathogens cannot be ruled out for the dog owner despite regular deworming four times a year.
Resumo:
We evaluated the suitability of single and multiple cell type cultures as model systems to characterise cellular kinetics of highly lipophilic compounds with potential ecotoxicological impact. Confluent mono-layers of human skin fibroblasts, rat astrocytoma C6 cells, non-differentiated and differentiated mouse 3T3 cells were kept in culture medium supplemented with 10% foetal calf serum. For competitive uptake experiments up to four different cell types, grown on glass sectors, were exposed for 3h to (14)C-labelled model compounds, dissolved either in organic solvents or incorporated into unilamellar lecithin liposomes. Bromo-, or chloro-benzenes, decabromodiphenylether (DBP), and dichlorodiphenyl ethylene (DDE) were tested in rather high concentration of 20 microM. Cellular toxicity was low. Compound levels were related to protein, DNA, and triglyceride contents. Cellular uptake was fast and dependent on physico-chemical properties of the compounds (lipophilicity, molecular size), formulation, and cell type. Mono-halogenated benzenes showed low and similar uptake levels (=low accumulation compounds). DBP and DDE showed much higher cellular accumulations (=high accumulation compounds) except for DBP in 3T3 cells. Uptake from liposomal formulations was mostly higher than if compounds were dissolved in organic solvents. The extent of uptake correlated with the cellular content of triglycerides, except for DBP. Uptake competition between different cell types was studied in a sectorial multi-cell culture model. For low accumulation compounds negligible differences were found among C6 cells and fibroblasts. Uptake of DDE was slightly and that of DBP highly increased in fibroblasts. Well-defined cell culture systems, especially the sectorial model, are appropriate to screen for bioaccumulation and cytotoxicity of (unknown) chemical entities in vitro.
Resumo:
A panel of infectious disease specialists, clinical microbiologists and hospital epidemiologists of the five Swiss university hospitals reviewed the current literature on the treatment of invasive fungal infections in adults and formulated guidelines for the management of patients in Switzerland. For empirical therapy of Candida bloodstream infection, fluconazole is the drug of choice in non-neutropenic patients with no severe sepsis or septic shock or recent exposure to azoles. Amphotericin B deoxycholate or caspofungin would be the treatment option for patients with previous azole exposure. In neutropenic patients, empirical therapy with amphotericin B deoxycholate is considered first choice. In patients with severe sepsis and septic shock, caspofungin is the drug of first choice. For therapy of microbiologically-documented Candida infection, fluconazole is the drug of choice for infections due to C. albicans, C. tropicalis or C. parapsilosis. When infections are caused by C. glabrata or by C. krusei, caspofungin or amphotericin B deoxycholate are first line therapies. Treatment guidelines for invasive aspergillosis (IA) were stratified into primary therapy, salvage therapy and combination therapy in critically ill patients. Voriconazole is recommended for primary (ie upfront) therapy. Caspofungin, voriconazole (if not used for primary therapy) or liposomal amphotericin B are recommended for salvage therapy for refractory disease. Combination therapy with caspofungin plus voriconazole or liposomal amphotericin B should be considered in critically ill patients. Amphotericin B deoxycholate is recommended as initial therapy for the empirical therapy in patients with neutropenia and persistent fever with close monitoring of adverse events.
Resumo:
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.
Resumo:
OX7 monoclonal antibody F((ab')2) fragments directed against Thy1.1 antigen can be used for drug targeting by coupling to the surface of drug-loaded liposomes. Such OX7-conjugated immunoliposomes (OX7-IL) were used recently for drug delivery to rat glomerular mesangial cells, which are characterized by a high level of Thy1.1 antigen expression. In the present study, the relationship between OX7-IL tissue distribution and target Thy1.1 antigen localization in different organs in rat was investigated. Western blot and immunohistofluorescence analysis revealed a very high Thy1.1 expression in brain cortex and striatum, thymus and renal glomeruli. Moderate Thy1.1 levels were observed in the collecting ducts of kidney, lung tissue and spleen. Thy1.1 was not detected in liver and heart. There was a poor correlation between Thy1.1 expression levels and organ distribution of fluorescence- or (14)C-labeled OX7-IL. The highest overall organ density of OX7-IL was observed in the spleen, followed by lung, liver and kidney. Heart and brain remained negative. With respect to intra-organ distribution, a localized and distinct signal was observed in renal glomerular mesangial cells only. As a consequence, acute pharmacological (i.e. toxic) effects of doxorubicin-loaded OX7-IL were limited to renal glomeruli. The competition with unbound OX7 monoclonal antibody F((ab')2) fragments demonstrated that the observed tissue distribution and acute pharmacological effects of OX7-IL were mediated specifically by the conjugated OX7 antibody. It is concluded that both the high target antigen density and the absence of endothelial barriers are needed to allow for tissue-specific accumulation and pharmacological effects of OX7-IL. The liposomal drug delivery strategy used is therefore specific toward renal glomeruli and can be expected to reduce the risk of unwanted side effects in other tissues.
Resumo:
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is resistant to chemotherapy. We reported that sirolimus, an mTOR inhibitor, has antiangiogenic properties in HCC. Since antiangiogenic therapy may enhance chemotherapy effects, we tested the antitumorigenic properties of sirolimus combined with doxorubicin in experimental HCC. METHODS: Morris Hepatoma (MH) cells were implanted into livers of syngeneic rats. Animals were assigned to sirolimus, pegylated liposomal doxorubicin, both combined or control groups. Tumoral growth was followed by MRI. Antiangiogenic effects were assessed by CD31 immunostaining and capillary tube formation assays. Cell proliferation was monitored in vitro by thymidine incorporation. Expression of p21 and phosphorylated MAPKAP kinase-2 was quantified by immunoblotting. RESULTS: Animals treated with the combination developed smaller tumors with decreased tumor microvessel density compared to animals that received monotherapies. In vitro, inhibition of mTOR further impaired capillary formation in the presence of doxorubicin. Doxorubicin reduced endothelial cell proliferation; inhibition of mTOR accentuated this effect. Doxorubicin stimulated p21 expression and the phosphorylation of MAPKAP kinase-2 in endothelial cells. Addition of mTOR inhibitor down-regulated p21, but did not decrease MAPKAP kinase-2 phosphorylation. CONCLUSIONS: Sirolimus has additive antitumoral and antiangiogenic effects when administered with doxorubicin. These findings offer a rationale for combining mTOR inhibitors with chemotherapy in HCC treatment.
Resumo:
Local hypoxia, as due to trauma, surgery, or arterial occlusive disease, may severely jeopardize the survival of the affected tissue and its wound-healing capacity. Initially developed to replace blood transfusions, artificial oxygen carriers have emerged as oxygen therapeutics in such conditions. The aim of this study was to target primary wound healing and survival in critically ischemic skin by the systemic application of left-shifted liposomal hemoglobin vesicles (HbVs). This was tested in bilateral, cranially based dorsal skin flaps in mice treated with a HbV solution with an oxygen affinity that was increased to a P(50) (partial oxygen tension at which the hemoglobin becomes 50% saturated with oxygen) of 9 mmHg. Twenty percent of the total blood volume of the HbV solution was injected immediately and 24 h after surgery. On the first postoperative day, oxygen saturation in the critically ischemic middle flap portions was increased from 23% (untreated control) to 39% in the HbV-treated animals (P < 0.05). Six days postoperatively, flap tissue survival was increased from 33% (control) to 57% (P < 0.01) and primary healing of the ischemic wound margins from 6.6 to 12.7 mm (P < 0.05) after HbV injection. In addition, higher capillary counts and endothelial nitric oxide synthase expression (both P < 0.01) were found in the immunostained flap tissue. We conclude that left-shifted HbVs may ameliorate the survival and primary wound healing in critically ischemic skin, possibly mediated by endothelial nitric oxide synthase-induced neovascularization.
Resumo:
Leishmaniaparasites cause a broad range of disease, with cutaneous afflictions being, by far, the most prevalent. Variations in disease severity and symptomatic spectrum are mostly associated to parasite species. One risk factor for the severity and emergence of leishmaniasis is immunosuppression, usually arising by coinfection of the patient with human immunodeficiency virus (HIV). Interestingly, several species ofLeishmaniahave been shown to bear an endogenous cytoplasmic dsRNA virus (LRV) of theTotiviridaefamily, and recently we correlated the presence of LRV1 withinLeishmaniaparasites to an exacerbation murine leishmaniasis and with an elevated frequency of drug treatment failures in humans. This raises the possibility of further exacerbation of leishmaniasis in the presence of both viruses, and here we report a case of cutaneous leishmaniasis caused byLeishmania braziliensisbearing LRV1 with aggressive pathogenesis in an HIV patient. LRV1 was isolated and partially sequenced from skin and nasal lesions. Genetic identity of both sequences reinforced the assumption that nasal parasites originate from primary skin lesions. Surprisingly, combined antiretroviral therapy did not impact the devolution ofLeishmaniainfection. TheLeishmaniainfection was successfully treated through administration of liposomal amphotericin B.