16 resultados para Layered titanosilicates

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted a stratigraphic analysis of the South Polar Layered Deposits (SPLDs) in Promethei Lingula (PL, Mars) based on the identification of regional unconformities at visible and radar wavelengths. According to the terrestrial classification, this approach constrains the stratigraphy of the region and remedies the ambiguous interpretation of stratigraphy through marker layers, bypassing the problem related to the morphologic and radiometric appearance of the layers. Thus, the approach does not exclude diverse classifications, but complements them, whereas other discriminant elements are doubtful or difficult/impossible to be defined. Using this approach, we defined two stratigraphic units (or synthems: PL1 and PL2) in PL, which are morphologically different and divided by a regional unconformity (AuR1). This stratigraphic architecture implies that the geological history of PL has been conditioned by periodic changes in climate, which in turn are related to orbital variations of Mars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compounds [NH3(CH2)4NH3]Cu3(hedp)2·2H2O (1) and [NH3(CH2)3NH3]Cu3(hedp)2·3.5H2O (2), where hedp represents 1-hydroxyethylidenediphosphonate, exhibit two-dimensional structures closely related to each other. The anionic layers with composition {Cu3(hedp)2}n2n- contain four- and eight-membered rings assembled from vertex-sharing {CuO4} units and {CPO3} tetrahedra. The protonated diamines and lattice water fill the interlayer spaces. Crystal data for 2:  space group P1̄, a = 8.0315(4), b = 11.3713(6), c = 13.3117(7) Å, α = 97.122(1), β = 103.187(1), γ = 108.668(1)°, V = 1095.5(1) Å3, Z = 2. Magnetic properties of the two compounds have been investigated. Both show typical metamagnetic behaviors at low temperature. The critical field at which the antiferromagnetic ground-state switches to a ferrimagnetic state is ∼48 Oe for 1 and 185 Oe for 2 at about 2 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.