16 resultados para Layered titanosilicates

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentary rocks on Mars provide insight into past aqueous and atmospheric processes, climate regimes, and potential habitability. The stratigraphic architecture of sedimentary rocks on Mars is similar to that of Earth, indicating that the processes that govern deposition and erosion on Mars can be reasonably inferred through reference to analogous terrestrial systems. This dissertation aims to understand Martian surface processes through the use of (1) ground-based observations from the Mars Exploration Rovers, (2) orbital data from the High Resolution Imaging Science Experiment onboard the Mars Reconnaissance Orbiter, and (3) the use of terrestrial field analogs to understand bedforms and sediment transport on Mars. Chapters 1 and 2 trace the history of aqueous activity at Meridiani Planum, through the reconstruction of eolian bedforms at Victoria crater, and the identification of a potential mudstone facies at Santa Maria crater. Chapter 3 uses Terrestrial Laser Scanning to study cross-bedding in pyroclastic surge deposits on Earth in order to understand sediment transport in these events and to establish criteria for their identification on Mars. The final chapter analyzes stratal geometries in the Martian North Polar Layered Deposits using tools for sequence stratigraphic analysis, to better constrain past surface processes and past climate conditions on Mars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic reflection methods have been extensively used to probe the Earth's crust and suggest the nature of its formative processes. The analysis of multi-offset seismic reflection data extends the technique from a reconnaissance method to a powerful scientific tool that can be applied to test specific hypotheses. The treatment of reflections at multiple offsets becomes tractable if the assumptions of high-frequency rays are valid for the problem being considered. Their validity can be tested by applying the methods of analysis to full wave synthetics.

Three studies illustrate the application of these principles to investigations of the nature of the crust in southern California. A survey shot by the COCORP consortium in 1977 across the San Andreas fault near Parkfield revealed events in the record sections whose arrival time decreased with offset. The reflectors generating these events are imaged using a multi-offset three-dimensional Kirchhoff migration. Migrations of full wave acoustic synthetics having the same limitations in geometric coverage as the field survey demonstrate the utility of this back projection process for imaging. The migrated depth sections show the locations of the major physical boundaries of the San Andreas fault zone. The zone is bounded on the southwest by a near-vertical fault juxtaposing a Tertiary sedimentary section against uplifted crystalline rocks of the fault zone block. On the northeast, the fault zone is bounded by a fault dipping into the San Andreas, which includes slices of serpentinized ultramafics, intersecting it at 3 km depth. These interpretations can be made despite complications introduced by lateral heterogeneities.

In 1985 the Calcrust consortium designed a survey in the eastern Mojave desert to image structures in both the shallow and the deep crust. Preliminary field experiments showed that the major geophysical acquisition problem to be solved was the poor penetration of seismic energy through a low-velocity surface layer. Its effects could be mitigated through special acquisition and processing techniques. Data obtained from industry showed that quality data could be obtained from areas having a deeper, older sedimentary cover, causing a re-definition of the geologic objectives. Long offset stationary arrays were designed to provide reversed, wider angle coverage of the deep crust over parts of the survey. The preliminary field tests and constant monitoring of data quality and parameter adjustment allowed 108 km of excellent crustal data to be obtained.

This dataset, along with two others from the central and western Mojave, was used to constrain rock properties and the physical condition of the crust. The multi-offset analysis proceeded in two steps. First, an increase in reflection peak frequency with offset is indicative of a thinly layered reflector. The thickness and velocity contrast of the layering can be calculated from the spectral dispersion, to discriminate between structures resulting from broad scale or local effects. Second, the amplitude effects at different offsets of P-P scattering from weak elastic heterogeneities indicate whether the signs of the changes in density, rigidity, and Lame's parameter at the reflector agree or are opposed. The effects of reflection generation and propagation in a heterogeneous, anisotropic crust were contained by the design of the experiment and the simplicity of the observed amplitude and frequency trends. Multi-offset spectra and amplitude trend stacks of the three Mojave Desert datasets suggest that the most reflective structures in the middle crust are strong Poisson's ratio (σ) contrasts. Porous zones or the juxtaposition of units of mutually distant origin are indicated. Heterogeneities in σ increase towards the top of a basal crustal zone at ~22 km depth. The transition to the basal zone and to the mantle include increases in σ. The Moho itself includes ~400 m layering having a velocity higher than that of the uppermost mantle. The Moho maintains the same configuration across the Mojave despite 5 km of crustal thinning near the Colorado River. This indicates that Miocene extension there either thinned just the basal zone, or that the basal zone developed regionally after the extensional event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.

In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.

Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.

In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.

Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.

Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.

Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.

Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From studies of protoplanetary disks to extrasolar planets and planetary debris, we aim to understand the full evolution of a planetary system. Observational constraints from ground- and space-based instrumentation allows us to measure the properties of objects near and far and are central to developing this understanding. We present here three observational campaigns that, when combined with theoretical models, reveal characteristics of different stages and remnants of planet formation. The Kuiper Belt provides evidence of chemical and dynamical activity that reveals clues to its primordial environment and subsequent evolution. Large samples of this population can only be assembled at optical wavelengths, with thermal measurements at infrared and sub-mm wavelengths currently available for only the largest and closest bodies. We measure the size and shape of one particular object precisely here, in hopes of better understanding its unique dynamical history and layered composition.

Molecular organic chemistry is one of the most fundamental and widespread facets of the universe, and plays a key role in planet formation. A host of carbon-containing molecules vibrationally emit in the near-infrared when excited by warm gas, T~1000 K. The NIRSPEC instrument at the W.M. Keck Observatory is uniquely configured to study large ranges of this wavelength region at high spectral resolution. Using this facility we present studies of warm CO gas in protoplanetary disks, with a new code for precise excitation modeling. A parameterized suite of models demonstrates the abilities of the code and matches observational constraints such as line strength and shape. We use the models to probe various disk parameters as well, which are easily extensible to others with known disk emission spectra such as water, carbon dioxide, acetylene, and hydrogen cyanide.

Lastly, the existence of molecules in extrasolar planets can also be studied with NIRSPEC and reveals a great deal about the evolution of the protoplanetary gas. The species we observe in protoplanetary disks are also often present in exoplanet atmospheres, and are abundant in Earth's atmosphere as well. Thus, a sophisticated telluric removal code is necessary to analyze these high dynamic range, high-resolution spectra. We present observations of a hot Jupiter, revealing water in its atmosphere and demonstrating a new technique for exoplanet mass determination and atmospheric characterization. We will also be applying this atmospheric removal code to the aforementioned disk observations, to improve our data analysis and probe less abundant species. Guiding models using observations is the only way to develop an accurate understanding of the timescales and processes involved. The futures of the modeling and of the observations are bright, and the end goal of realizing a unified model of planet formation will require both theory and data, from a diverse collection of sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports investigations upon weakly superconducting proximity effect bridges. These bridges, which exhibit the Josephson effects, are produced by bisecting a superconductor with a short (<1µ) region of material whose superconducting transition temperature is below that of the adjacent superconductors. These bridges are fabricated from layered refractory metal thin films whose transition temperature will depend upon the thickness ratio of the materials involved. The thickness ratio is changed in the area of the bridge to lower its transition temperature. This is done through novel photolithographic techniques described in the text, Chapter 2.

If two such proximity effect bridges are connected in parallel, they form a quantum interferometer. The maximum zero voltage current through this circuit is periodically modulated by the magnetic flux through the circuit. At a constant bias current, the modulation of the critical current produces a modulation in the dc voltage across the bridge. This change in dc voltage has been found to be the result of a change in the internal dissipation in the device. A simple model using lumped circuit theory and treating the bridges as quantum oscillators of frequency ω = 2eV/h, where V is the time average voltage across the device, has been found to adequately describe the observed voltage modulation.

The quantum interferometers have been converted to a galvanometer through the inclusion of an integral thin film current path which couples magnetic flux through the interferometer. Thus a change in signal current produces a change in the voltage across the interferometer at a constant bias current. This work is described in Chapter 3 of the text.

The sensitivity of any device incorporating proximity effect bridges will ultimately be determined by the fluctuations in their electrical parameters. He have measured the spectral power density of the voltage fluctuations in proximity effect bridges using a room temperature electronics and a liquid helium temperature transformer to match the very low (~ 0.1 Ω) impedances characteristic of these devices.

We find the voltage noise to agree quite well with that predicted by phonon noise in the normal conduction through the bridge plus a contribution from the superconducting pair current through the bridge which is proportional to the ratios of this current to the time average voltage across the bridge. The total voltage fluctuations are given by <V^2(f ) > = 4kTR^2_d I/V where R_d is the dynamic resistance, I the total current, and V the voltage across the bridge . An additional noise source appears with a strong 1/f^(n) dependence , 1.5 < n < 2, if the bridges are fabricated upon a glass substrate. This excess noise, attributed to thermodynamic temperature fluctuations in the volume of the bridge, increases dramatically on a glass substrate due to the greatly diminished thermal diffusivity of the glass as compared to sapphire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.

Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.

The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing—which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them—including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these terraces from terraces formed by externally forced pulses of vertical incision. In a separate study, Chapter 5 utilizes image and topographic data from the Mars Reconnaissance Orbiter to quantitatively identify spatial structures in the polar layered deposits of Mars, and identifies sequences of beds, consistently 1-2 meters thick, that have accumulated hundreds of kilometers apart in the north polar layered deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.

Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.

To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.

To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the worldwide prevalence of diabetes mellitus continues to increase, diabetic retinopathy remains the leading cause of visual impairment and blindness in many developed countries. Between 32 to 40 percent of about 246 million people with diabetes develop diabetic retinopathy. Approximately 4.1 million American adults 40 years and older are affected by diabetic retinopathy. This glucose-induced microvascular disease progressively damages the tiny blood vessels that nourish the retina, the light-sensitive tissue at the back of the eye, leading to retinal ischemia (i.e., inadequate blood flow), retinal hypoxia (i.e., oxygen deprivation), and retinal nerve cell degeneration or death. It is a most serious sight-threatening complication of diabetes, resulting in significant irreversible vision loss, and even total blindness.

Unfortunately, although current treatments of diabetic retinopathy (i.e., laser therapy, vitrectomy surgery and anti-VEGF therapy) can reduce vision loss, they only slow down but cannot stop the degradation of the retina. Patients require repeated treatment to protect their sight. The current treatments also have significant drawbacks. Laser therapy is focused on preserving the macula, the area of the retina that is responsible for sharp, clear, central vision, by sacrificing the peripheral retina since there is only limited oxygen supply. Therefore, laser therapy results in a constricted peripheral visual field, reduced color vision, delayed dark adaptation, and weakened night vision. Vitrectomy surgery increases the risk of neovascular glaucoma, another devastating ocular disease, characterized by the proliferation of fibrovascular tissue in the anterior chamber angle. Anti-VEGF agents have potential adverse effects, and currently there is insufficient evidence to recommend their routine use.

In this work, for the first time, a paradigm shift in the treatment of diabetic retinopathy is proposed: providing localized, supplemental oxygen to the ischemic tissue via an implantable MEMS device. The retinal architecture (e.g., thickness, cell densities, layered structure, etc.) of the rabbit eye exposed to ischemic hypoxic injuries was well preserved after targeted oxygen delivery to the hypoxic tissue, showing that the use of an external source of oxygen could improve the retinal oxygenation and prevent the progression of the ischemic cascade.

The proposed MEMS device transports oxygen from an oxygen-rich space to the oxygen-deficient vitreous, the gel-like fluid that fills the inside of the eye, and then to the ischemic retina. This oxygen transport process is purely passive and completely driven by the gradient of oxygen partial pressure (pO2). Two types of devices were designed. For the first type, the oxygen-rich space is underneath the conjunctiva, a membrane covering the sclera (white part of the eye), beneath the eyelids and highly permeable to oxygen in the atmosphere when the eye is open. Therefore, sub-conjunctival pO2 is very high during the daytime. For the second type, the oxygen-rich space is inside the device since pure oxygen is needle-injected into the device on a regular basis.

To prevent too fast or too slow permeation of oxygen through the device that is made of parylene and silicone (two widely used biocompatible polymers in medical devices), the material properties of the hybrid parylene/silicone were investigated, including mechanical behaviors, permeation rates, and adhesive forces. Then the thicknesses of parylene and silicone became important design parameters that were fine-tuned to reach the optimal oxygen permeation rate.

The passive MEMS oxygen transporter devices were designed, built, and tested in both bench-top artificial eye models and in-vitro porcine cadaver eyes. The 3D unsteady saccade-induced laminar flow of water inside the eye model was modeled by computational fluid dynamics to study the convective transport of oxygen inside the eye induced by saccade (rapid eye movement). The saccade-enhanced transport effect was also demonstrated experimentally. Acute in-vivo animal experiments were performed in rabbits and dogs to verify the surgical procedure and the device functionality. Various hypotheses were confirmed both experimentally and computationally, suggesting that both the two types of devices are very promising to cure diabetic retinopathy. The chronic implantation of devices in ischemic dog eyes is still underway.

The proposed MEMS oxygen transporter devices can be also applied to treat other ocular and systemic diseases accompanied by retinal ischemia, such as central retinal artery occlusion, carotid artery disease, and some form of glaucoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the development and investigation of a new type of concrete for the attenuation of waves induced by dynamic excitation. Recent progress in the field of metamaterials science has led to a range of novel composites which display unusual properties when interacting with electromagnetic, acoustic, and elastic waves. A new structural metamaterial with enhanced properties for dynamic loading applications is presented, which is named metaconcrete. In this new composite material the standard stone and gravel aggregates of regular concrete are replaced with spherical engineered inclusions. Each metaconcrete aggregate has a layered structure, consisting of a heavy core and a thin compliant outer coating. This structure allows for resonance at or near the eigenfrequencies of the inclusions, and the aggregates can be tuned so that resonant oscillations will be activated by particular frequencies of an applied dynamic loading. The activation of resonance within the aggregates causes the overall system to exhibit negative effective mass, which leads to attenuation of the applied wave motion. To investigate the behavior of metaconcrete slabs under a variety of different loading conditions a finite element slab model containing a periodic array of aggregates is utilized. The frequency dependent nature of metaconcrete is investigated by considering the transmission of wave energy through a slab, which indicates the presence of large attenuation bands near the resonant frequencies of the aggregates. Applying a blast wave loading to both an elastic slab and a slab model that incorporates the fracture characteristics of the mortar matrix reveals that a significant portion of the supplied energy can be absorbed by aggregates which are activated by the chosen blast wave profile. The transfer of energy from the mortar matrix to the metaconcrete aggregates leads to a significant reduction in the maximum longitudinal stress, greatly improving the ability of the material to resist damage induced by a propagating shock wave. The various analyses presented in this work provide the theoretical and numerical background necessary for the informed design and development of metaconcrete aggregates for dynamic loading applications, such as blast shielding, impact protection, and seismic mitigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central theme of this thesis is the use of imidazolium-based organic structure directing agents (OSDAs) in microporous materials synthesis. Imidazoliums are advantageous OSDAs as they are relatively inexpensive and simple to prepare, show robust stability under microporous material synthesis conditions, have led to a wide range of products, and have many permutations in structure that can be explored. The work I present involves the use of mono-, di-, and triquaternary imidazolium-based OSDAs in a wide variety of microporous material syntheses. Much of this work was motivated by successful computational predictions (Chapter 2) that led me to continue to explore these types of OSDAs. Some of the important discoveries with these OSDAs include the following: 1) Experimental evaluation and confirmation of a computational method that predicted a new OSDA for pure-silica STW, a desired framework containing helical pores that was previously very difficult to synthesize. 2) Discovery of a number of new imidazolium OSDAs to synthesize zeolite RTH, a zeolite desired for both the methanol-to-olefins reaction as well as NOX reduction in exhaust gases. This discovery enables the use of RTH for many additional investigations as the previous OSDA used to make this framework was difficult to synthesize, such that no large scale preparations would be practical. 3) The synthesis of pure-silica RTH by topotactic condensation from a layered precursor (denoted CIT-10), that can also be pillared to make a new framework material with an expanded pore system, denoted CIT-11, that can be calcined to form a new microporous material, denoted CIT-12. CIT-10 is also interesting since it is the first layered material to contain 8 membered rings through the layers, making it potentially useful in separations if delamination methods can be developed. 4) The synthesis of a new microporous material, denoted CIT-7 (framework code CSV) that contains a 2-dimensional system of 8 and 10 membered rings with a large cage at channel intersections. This material is especially important since it can be synthesized as a pure-silica framework under low-water, fluoride-mediated synthesis conditions, and as an aluminosilicate material under hydroxide mediated conditions. 5) The synthesis of high-silica heulandite (HEU) by topotactic condensation as well as direct synthesis, demonstrating new, more hydrothermally stable compositions of a previously known framework. 6) The synthesis of germanosilicate and aluminophosphate LTA using a triquaternary OSDA. All of these materials show the diverse range of products that can be formed from OSDAs that can be prepared by straightforward syntheses and have made many of these materials accessible for the first time under facile zeolite synthesis conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Earth's largest geoid anomalies occur at the lowest spherical harmonic degrees, or longest wavelengths, and are primarily the result of mantle convection. Thermal density contrasts due to convection are partially compensated by boundary deformations due to viscous flow whose effects must be included in order to obtain a dynamically consistent model for the geoid. These deformations occur rapidly with respect to the timescale for convection, and we have analytically calculated geoid response kernels for steady-state, viscous, incompressible, self-gravitating, layered Earth models which include the deformation of boundaries due to internal loads. Both the sign and magnitude of geoid anomalies depend strongly upon the viscosity structure of the mantle as well as the possible presence of chemical layering.

Correlations of various global geophysical data sets with the observed geoid can be used to construct theoretical geoid models which constrain the dynamics of mantle convection. Surface features such as topography and plate velocities are not obviously related to the low-degree geoid, with the exception of subduction zones which are characterized by geoid highs (degrees 4-9). Recent models for seismic heterogeneity in the mantle provide additional constraints, and much of the low-degree (2-3) geoid can be attributed to seismically inferred density anomalies in the lower mantle. The Earth's largest geoid highs are underlain by low density material in the lower mantle, thus requiring compensating deformations of the Earth's surface. A dynamical model for whole mantle convection with a low viscosity upper mantle can explain these observations and successfully predicts more than 80% of the observed geoid variance.

Temperature variations associated with density anomalies in the man tie cause lateral viscosity variations whose effects are not included in the analytical models. However, perturbation theory and numerical tests show that broad-scale lateral viscosity variations are much less important than radial variations; in this respect, geoid models, which depend upon steady-state surface deformations, may provide more reliable constraints on mantle structure than inferences from transient phenomena such as postglacial rebound. Stronger, smaller-scale viscosity variations associated with mantle plumes and subducting slabs may be more important. On the basis of numerical modelling of low viscosity plumes, we conclude that the global association of geoid highs (after slab effects are removed) with hotspots and, perhaps, mantle plumes, is the result of hot, upwelling material in the lower mantle; this conclusion does not depend strongly upon plume rheology. The global distribution of hotspots and the dominant, low-degree geoid highs may correspond to a dominant mode of convection stabilized by the ancient Pangean continental assemblage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a simplified approach for estimating theoretically the influence of local subsoils upon the ground motion during an earthquake, the problem of an idealized layered system subjected to vertically incident plane body waves was studied. Both the technique of steady-state analysis and the technique of transient analysis have been used to analyze the problem.

In the steady-state analysis, a recursion formula has been derived for obtaining the response of a layered system to sinusoidally steady-state input. Several conclusions are drawn concerning the nature of the amplification spectrum of a nonviscous layered system having its layer stiffnesses increasing with depth. Numerical examples are given to demonstrate the effect of layer parameters on the amplification spectrum of a layered system.

In the transient analysis, two modified shear beam models have been established for obtaining approximately the response of a layered system to earthquake-like excitation. The method of continuous modal analysis was adopted for approximate analysis of the models, with energy dissipation in the layers, if any, taken into account. Numerical examples are given to demonstrate the accuracy of the models and the effect of a layered system in modifying the input motion.

Conditions are established, under which the theory is applicable to predict the influence of local subsoils on the ground motion during an earthquake. To demonstrate the applicability of the models to actual cases, three examples of actually recorded earthquake events are examined. It is concluded that significant modification of the incoming seismic waves, as predicted by the theory, is likely to occur in well defined soft subsoils during an earthquake, provided that certain conditions concerning the nature of the incoming seismic waves are satisfied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.

The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.

We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.