39 resultados para Laser refractive surgery
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: To assess the outcomes in patients who required 1 or more vitreoretinal interventions for posterior segment complications arising from elective uneventful cataract surgery. SETTING: Tertiary referral center, single-center study. METHODS: A retrospective interventional case series included 56 consecutive patients who were referred for surgical correction of posterior segment complications within 6 months of cataract surgery. The study period was between 1996 and 2003, and the minimum follow-up was 5 months. RESULTS: Posterior segment complications were resolved with a single surgical intervention in 40 cases (71.4%). Within 5 months of primary surgical correction, persisting or newly arising posterior segment complications were noted in 16 cases (28.6%). After a mean of 2.1 +/- 1.4 (SD) additional surgeries, the number of eyes with posterior segment problems decreased to 7 (12.5%) (P = .035). Posterior segment complications requiring more than 1 vitreoretinal intervention included retinal detachment, endophthalmitis, and choroidal hemorrhages. After primary correction surgery, the mean best corrected visual acuity increased from 0.15 +/- 0.24 to 0.37 +/- 0.33 (P = .001) after a single intervention and to 0.39 +/- 0.32 (P>.05) after additional interventions. Although the intraocular pressure (IOP) decreased from 21.8 +/- 16.6 mm Hg to 14.9 +/- 3.4 mm Hg (P = .008), 4 (7.1%) consecutive vascular optic atrophies occurred. A reduction in corneal transparency was observed in 46.4% of patients before primary surgical correction and 12.5% after primary surgical correction (P<.001). CONCLUSIONS: In many cases, posterior segment complications arising from cataract surgery could be repaired with favorable functional and anatomical outcomes by a single vitreoretinal intervention. Additional surgery, if requested, provided stabilization of the anatomical and functional outcomes.
Resumo:
To assess the impact of topical anesthetic agents and ethanol on ocular surface wound healing using an ex vivo whole-globe porcine model.
Resumo:
PURPOSE: To report a case of bilateral central crystalline keratopathy in the anterior stroma occurring 4 years after Intacs implantation. METHODS: A 45-year-old woman underwent bilateral uncomplicated Intacs implantation for myopia. The postoperative course was uneventful. However, between 3 and 4 years after surgery, the patient developed central opacifications of the anterior stroma in both eyes, reducing best spectacle-corrected visual acuity. RESULTS: Intacs were explanted. Confocal microscopy, electron microscopy of the explanted ring segments, and microbiology studies were performed. Opacities were still detectable at the slit-lamp microscope up to 8 months after explantation. CONCLUSIONS: This is the first report on central corneal opacifications after Intacs implantation for myopia. The opacities could be the result of chronic metabolic stress or the beginning of lipid-like changes in another more central corneal localization.
Resumo:
PURPOSE To observe changes in fundus autofluorescence 2 years after implantation of blue light-filtering (yellow-tinted) and ultraviolet light-filtering (colorless) intraocular lenses (IOLs). SETTING Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan, and the Department of Ophthalmology, University of Bern, Bern, Switzerland. DESIGN Prospective comparative observational study. METHODS Patients were enrolled who had cataract surgery with implantation of a yellow-tinted or colorless IOL and for whom images were obtained on which the fundus autofluorescence was measurable using the Heidelberg Retina Angiogram 2 postoperatively. The fundus autofluorescence in the images was classified into 8 abnormal patterns based on the classification of the International Fundus Autofluorescence Classification Group, The presence of normal fundus autofluorescence, geographic atrophy, and wet age-related macular degeneration (AMD) also was recorded. The fundus findings at baseline and 2 years postoperatively were compared. RESULTS Fifty-two eyes with a yellow-tinted IOL and 79 eyes with a colorless IOL were included. Abnormal fundus autofluorescence did not develop or increase in the yellow-tinted IOL group; however, progressive abnormal fundus autofluorescence developed or increased in 12 eyes (15.2%) in the colorless IOL group (P = .0016). New drusen, geographic atrophy, and choroidal neovascularization were observed mainly in the colorless IOL group. The incidence of AMD was statistically significantly higher in the colorless IOL group (P = .042). CONCLUSIONS Two years after cataract surgery, significant differences were seen in the progression of abnormal fundus autofluorescence between the 2 groups. The incidence of AMD was lower in eyes with a yellow-tinted IOL. FINANCIAL DISCLOSURE No author has a financial or proprietary interest in any material or method mentioned.
Resumo:
PURPOSE To determine whether the scleral stroma is affected as much as the corneal stroma in keratoconus. SETTING University Eye Clinic, Bern, Switzerland. DESIGN Comparative case-control study. METHODS Eyes with keratoconus (keratoconus group) and eyes of age-, sex-, and axial length-matched controls (control group) were analyzed. Corneal videokeratometry and pachymetry were performed using a Scheimpflug tomographer (Pentacam). For measurements of the peripheral cornea and the anterior sclera, a spectral-domain anterior segment optical coherence tomography device (Spectralis) was used. RESULTS The study group comprised 51 eyes and the control group, 50 eyes. The mean central corneal thickness in the keratoconus group was statistically significantly lower than in the control group (447.8 μm ± 57.8 [SD] versus 550.5 ± 35.5 μm) (P < .0001). No significant difference in the mean anterior scleral thickness was found between the keratoconus group and the control group (479.1 ± 43.7 μm versus 474.2 ± 43.0 μm) (P =.57). CONCLUSION Although corneal thinning was observed in keratoconus patients, the anterior scleral stroma thickness in these patients seemed to be similar to that in healthy control eyes.
Resumo:
Complete closure of gastrotomy is the linchpin of safe natural orifice transgastric endoscopic surgery.
Resumo:
OBJECT: Patients with complex craniocerebral pathophysiologies such as giant cerebral aneurysms, skull base tumors, and/or carotid artery occlusive disease are candidates for a revascularization procedure to augment or preserve cerebral blood flow. However, the brain is susceptible to ischemia, and therefore the excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed to overcome temporary occlusion. Harvesting autologous vessels of reasonable quality, which is necessary for this technique, may at times be problematic or impossible due to the underlying systemic vascular disease. The use of artificial vessels is therefore an alternative graft for revascularization. Note, however, that it is unknown to what degree these grafts are subject to occlusion using the ELANA anastomosis technique. Therefore, the authors studied the ELANA technique in combination with an expanded polytetrafluoroethylene (ePTFE) graft. METHODS: The experimental surgeries involved bypassing the abdominal aorta in the rabbit. Ten rabbits were subjected to operations representing 20 ePTFE graft-ELANA end-to-side anastomoses. Intraoperative blood flow, followup angiograms, and long-term histological characteristics were assessed 75, 125, and 180 days postoperatively. Angiography results proved long-term patency of ePTFE grafts in all animals at all time points studied. Data from the histological analysis showed minimal intimal reaction at the anastomosis site up to 180 days postoperatively. Endothelialization of the ePTFE graft was progressive over time. CONCLUSIONS: The ELANA technique in combination with the ePTFE graft seems to have favorable attributes for end-to-side anastomoses and may be suitable for bypass procedures.
Resumo:
Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system’s position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device’s projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.
Resumo:
Laser tissue soldering (LTS) is a promising technique for tissue fusion but is limited by the lack of reproducibility particularly when the amount of indocyanine green (ICG) applied as energy absorber cannot be controlled during the soldering procedure. Nanotechnology enables the control over the quantitative binding of the ICG. The aim of this study was to establish a highly reproducible and strong tissue fusion using ICG packed nanoshells. By including the chromophore in the soldering scaffold, dilution of the energy absorber during the soldering procedure is prevented. The feasibility of this novel nanoshell soldering technique was studied by assessing the local heating of the area and tensile strength of the resulting fused tissue.
Resumo:
Microsurgical suturing is the standard for cerebral bypass surgery, a technique where temporary occlusion is usually necessary. Non-occlusive techniques such as excimer laser-assisted non-occlusive anastomosis (ELANA) have certainly widened the spectrum of treatment of complex cerebrovascular situations, such as giant cerebral aneurysms, that were otherwise non-treatable. Nevertheless, the reduction of surgical risks while widening the spectrum of indications, such as a prophylactic cerebral bypass, is still a main aim, that we would like to pursue with our sutureless tissue fusion research. The primary concern in sutureless tissue fusion- and especially in tissue fusion of cerebral vessels- is the lack of reproducibility, often caused by variations in the thermal damage of the vessel. This has prevented this novel fusion technique from being applicable in daily surgical use. In this overview, we present three ways to further improve the laser tissue soldering technique.In the first section entitled "Laser Tissue Soldering Using a Biodegradable Polymer," a porous polymer scaffold doped with albumin (BSA) and indocyanine green (ICG) is presented, leading to strong and reproducible tensile strengths in tissue soldering. Histologies and future developments are discussed.In the section "Numerical Simulation for Improvement of Laser Tissue Soldering," a powerful theoretical simulation model is used to calculate temperature distribution during soldering. The goal of this research is to have a tool in hand that allows us to determine laser irradiation parameters that guarantee strong vessel fusion without thermally damaging the inner structures such as the intima and endothelium.In a third section, "Nanoparticles in Laser Tissue Soldering," we demonstrate that nanoparticles can be used to produce a stable and well-defined spatial absorption profile in the scaffold, which is an important step towards increasing the reproducibility. The risks of implanting nanoparticles into a biodegradable scaffold are discussed.Step by step, these developments in sutureless tissue fusion have improved the tensile strength and the reproducibility, and are constantly evolving towards a clinically applicable anastomosis technique.
Resumo:
Since the initial work of Jacobson and Suarez in 1960, microsurgery has evolved greatly. In 2009, we reported our clinical experience with 1.9 µm diode laser-assisted vascular microanastomoses (LAMA) for free flap reconstruction. In this report, the ongoing study is now expanded to include 11 additional procedures which were analyzed prospectively with a focus on the duration of the LAMA technique.
Resumo:
Animal studies of excisional biopsies have shown less thermal damage when a carbon dioxide (CO(2)) laser (10.6 μm) is used in a char-free (CF) mode than in a continuous-wave (CW) mode. The authors' aim was to evaluate and compare clinical and histopathologic findings of excisional biopsies performed with CW and CF CO(2) laser (10.6 μm) modes.