134 resultados para Interceptive orthodontics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Randomization is a key step in reducing selection bias during the treatment allocation phase in randomized clinical trials. The process of randomization follows specific steps, which include generation of the randomization list, allocation concealment, and implementation of randomization. The phenomenon in the dental and orthodontic literature of characterizing treatment allocation as random is frequent; however, often the randomization procedures followed are not appropriate. Randomization methods assign, at random, treatment to the trial arms without foreknowledge of allocation by either the participants or the investigators thus reducing selection bias. Randomization entails generation of random allocation, allocation concealment, and the actual methodology of implementing treatment allocation randomly and unpredictably. Most popular randomization methods include some form of restricted and/or stratified randomization. This article introduces the reasons, which make randomization an integral part of solid clinical trial methodology, and presents the main randomization schemes applicable to clinical trials in orthodontics.
Resumo:
The purpose of this study was to search the orthodontic literature and determine the frequency of reporting of confidence intervals (CIs) in orthodontic journals with an impact factor. The six latest issues of the American Journal of Orthodontics and Dentofacial Orthopedics, the European Journal of Orthodontics, and the Angle Orthodontist were hand searched and the reporting of CIs, P values, and implementation of univariate or multivariate statistical analyses were recorded. Additionally, studies were classified according to the type/design as cross-sectional, case-control, cohort, and clinical trials, and according to the subject of the study as growth/genetics, behaviour/psychology, diagnosis/treatment, and biomaterials/biomechanics. The data were analyzed using descriptive statistics followed by univariate examination of statistical associations, logistic regression, and multivariate modelling. CI reporting was very limited and was recorded in only 6 per cent of the included published studies. CI reporting was independent of journal, study area, and design. Studies that used multivariate statistical analyses had a higher probability of reporting CIs compared with those using univariate statistical analyses. Misunderstanding of the use of P values and CIs may have important implications in implementation of research findings in clinical practice.
Resumo:
Abstract Objectives: To assess the reporting quality of Cochrane and non-Cochrane systematic reviews (SR) in orthodontics and to compare the reporting quality (PRISMA score) with methodological quality (AMSTAR criteria). Materials and Methods: Systematic reviews (n = 109) published between January 2000 and July 2011 in five leading orthodontic journals were identified and included. The quality of reporting of the included reviews was assessed by two authors in accordance with the PRISMA guidelines. Each article was assigned a cumulative grade based on fulfillment of the applicable criteria, and an overall percentage score was assigned. Descriptive statistics and simple and multiple linear regression analyses were undertaken. Results: The mean overall PRISMA score was 64.1% (95% confidence interval [CI], 62%-65%). The quality of reporting was considerably better in reviews published in the Cochrane Database of Systematic Reviews (P < .001) than in non-Cochrane reviews. Both multivariable and univariable analysis indicated that journal of publication and number of authors was significantly associated with the PRISMA score. The association between AMSTAR score and modified PRISMA score was also found to be highly statistically significant. Conclusion: Compliance of orthodontic SRs published in orthodontic journals with PRISMA guidelines was deficient in several areas. The quality of reporting assessed using PRISMA guidelines was significantly better in orthodontic SRs published in the Cochrane Database of Systematic Reviews.
Resumo:
SUMMARY Split-mouth designs first appeared in dental clinical trials in the late sixties. The main advantage of this study design is its efficiency in terms of sample size as the patients act as their own controls. Cited disadvantages relate to carry-across effects, contamination or spilling of the effects of one intervention to another, period effects if the interventions are delivered at different time periods, difficulty in finding similar comparison sites within patients and the requirement for more complex data analysis. Although some additional thought is required when utilizing a split-mouth design, the efficiency of this design is attractive, particularly in orthodontic clinical studies where carry-across, period effects and dissimilarity between intervention sites does not pose a problem. Selection of the appropriate research design, intervention protocol and statistical method accounting for both the reduced variability and potential clustering effects within patients should be considered for the trial results to be valid.
Resumo:
Cluster randomized trials (CRTs) use as the unit of randomization clusters, which are usually defined as a collection of individuals sharing some common characteristics. Common examples of clusters include entire dental practices, hospitals, schools, school classes, villages, and towns. Additionally, several measurements (repeated measurements) taken on the same individual at different time points are also considered to be clusters. In dentistry, CRTs are applicable as patients may be treated as clusters containing several individual teeth. CRTs require certain methodological procedures during sample calculation, randomization, data analysis, and reporting, which are often ignored in dental research publications. In general, due to similarity of the observations within clusters, each individual within a cluster provides less information compared with an individual in a non-clustered trial. Therefore, clustered designs require larger sample sizes compared with non-clustered randomized designs, and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this article to highlight with relevant examples the important methodological characteristics of cluster randomized designs as they may be applied in orthodontics and to explain the problems that may arise if clustered observations are erroneously treated and analysed as independent (non-clustered).
Resumo:
OBJECTIVES Accurate trial reporting facilitates evaluation and better use of study results. The objective of this article is to investigate the quality of reporting of randomized controlled trials (RCTs) in leading orthodontic journals, and to explore potential predictors of improved reporting. METHODS The 50 most recent issues of 4 leading orthodontic journals until November 2013 were electronically searched. Reporting quality assessment was conducted using the modified CONSORT statement checklist. The relationship between potential predictors and the modified CONSORT score was assessed using linear regression modeling. RESULTS 128 RCTs were identified with a mean modified CONSORT score of 68.97% (SD = 11.09). The Journal of Orthodontics (JO) ranked first in terms of completeness of reporting (modified CONSORT score 76.21%, SD = 10.1), followed by American Journal of Orthodontics and Dentofacial Orthopedics (AJODO) (73.05%, SD = 10.1). Journal of publication (AJODO: β = 10.08, 95% CI: 5.78, 14.38; JO: β = 16.82, 95% CI: 11.70, 21.94; EJO: β = 7.21, 95% CI: 2.69, 11.72 compared to Angle), year of publication (β = 0.98, 95% CI: 0.28, 1.67 for each additional year), region of authorship (Europe: β = 5.19, 95% CI: 1.30, 9.09 compared to Asia/other), statistical significance (significant: β = 3.10, 95% CI: 0.11, 6.10 compared to non-significant) and methodologist involvement (involvement: β = 5.60, 95% CI: 1.66, 9.54 compared to non-involvement) were all significant predictors of improved modified CONSORT scores in the multivariable model. Additionally, median overall Jadad score was 2 (IQR = 2) across journals, with JO (median = 3, IQR = 1) and AJODO (median = 3, IQR = 2) presenting the highest score values. CONCLUSION The reporting quality of RCTs published in leading orthodontic journals is considered suboptimal in various CONSORT areas. This may have a bearing in trial result interpretation and use in clinical decision making and evidence- based orthodontic treatment interventions.
Resumo:
INTRODUCTION As the importance of systematic review (SR) conclusions relies upon the scientific rigor of methods and the currency of evidence, we aimed to investigate the currency of orthodontic SRs using as proxy the time from the initial search to publication. Additionally, SR information regarding reporting guidelines, registration, and literature searches were recorded when available. MATERIALS AND METHODS A systematic PubMed search was carried out using the Clinical Queries page to identify orthodontic SRs cited between 1 January 2008 and 7 November 2013. Data related to reporting guidelines, review registration, dates of review processing, literature search, and abstract reporting were retrieved and classified by journal type. Survival analysis was used to assess the time to reach predefined manuscript stages for orthodontic and non-orthodontic journals. RESULTS One hundred twenty seven of the originally identified 585 SRs were considered eligible. The median interval from search until publication was 13.2 months (interquartile range: IQR = 9.7 months) irrespective of the journal type. There was evidence (P = 0.05) that SRs published by non-orthodontic journals appeared in PubMed faster than in orthodontic journals (non-orthodontic: median = 6.5 months; IQR = 5.7 months; orthodontic: median = 10.2 months; IQR = 5.6 months) from submission to publication and from acceptance to publication (non-orthodontic: median = 1.5 months; IQR = 2.4 months; orthodontic: median = 6.0 months; IQR = 6.2 months; P < 0.001). More than half of these SRs did not cite adherence to any reporting guidelines, whereas all but five studies were not prospectively registered. Search of unpublished research was undertaken in approximately 21 per cent and 29 per cent of the SRs published in non-orthodontic and orthodontic periodicals, respectively. CONCLUSIONS This study indicates that SR users should be aware that median time for orthodontic SRs from search to publication is 13.2 months. SRs published in non-orthodontic journals are likely to be more current in terms of submission until time to publication and acceptance until time to publication compared with those published in orthodontic journals.
Resumo:
To perform a systematic review on the effect of changes in incisor inclination owing to orthodontic treatment and the occurrence of gingival recession. PubMed, EMBASE Excerpta Medica and CENTRAL of the Cochrane Library were searched and a hand search was performed. From 1925 articles identified, 17 articles were finally included: six experimental animal studies and 11 retrospective clinical studies in humans. More proclined teeth compared with less proclined teeth or untreated teeth had in most studies a higher occurrence or severity of gingival recession. Contradictory results were found regarding a possible statistically significant correlation between the extent of gingival recession and the amount of incisor proclination during treatment, width of attached gingiva, hygiene, periodontal condition or thickness of the symphysis. There are no high quality animal or clinical studies on this topic. Movement of the incisors out of the osseous envelope of the alveolar process may be associated with a higher tendency for developing gingival recessions. The amount of recession found in studies with statistically significant differences between proclined and non-proclined incisors is small and the clinical consequence questionable. Because of the low level of evidence of the included studies, the results should be considered with caution. Further randomized clinical studies including clinical examination of hygiene and gingival condition before, during and after treatment are needed to clarify the effect of orthodontic changes in incisor inclination and the occurrence of gingival recession.
Resumo:
INTRODUCTION: Fixed orthodontic appliances can alter the subgingival microbiota. Our aim was to compare the subgingival microbiota and clinical parameters in adolescent subjects at sites of teeth treated with orthodontic bands with margins at (OBM) or below the gingival margin (OBSM), or with brackets (OBR). METHODS: Microbial samples were collected from 33 subjects (ages, 12-18 years) in treatment more than 6 months. The microbiota was assessed by the DNA-DNA checkerboard hybridization method. RESULTS: Bacterial samples were taken from 83 OBR,103 OBSM, and 54 OBM sites. Probing pocket depths differed by orthodontic type (P <0.001) with mean values of 2.9 mm (SD, 0.6) at OBSM sites, 2.5 mm (SD, 0.6) at OBM sites, and 2.3 mm (SD, 0.5) at OBR sites. Only Actinomyces israelii (P <0.001) and Actinomyces naeslundii (P <0.001) had higher levels at OBR sites, whereas Neisseria mucosa had higher levels at sites treated with OBSM or OBM (P <0.001). Aggregatibacter actinomycetemcomitans was found in 25% of sites independent of the appliance. CONCLUSIONS: Different types of orthodontic appliances cause minor differences in the subgingival microbiota (A israelii and A naeslundii) and higher levels at sites treated with orthodontic brackets. More sites with bleeding on probing and deeper pockets were found around orthodontic bands.
Resumo:
To determine the frequency of incidental maxillary sinus findings using cone-beam computed tomography (CBCT) images made for orthodontic purposes.
Resumo:
Proper sample size estimation is an important part of clinical trial methodology and closely related to the precision and power of the trial's results. Trials with sufficient sample sizes are scientifically and ethically justified and more credible compared with trials with insufficient sizes. Planning clinical trials with inadequate sample sizes might be considered as a waste of time and resources, as well as unethical, since patients might be enrolled in a study in which the expected results will not be trusted and are unlikely to have an impact on clinical practice. Because of the low emphasis of sample size calculation in clinical trials in orthodontics, it is the objective of this article to introduce the orthodontic clinician to the importance and the general principles of sample size calculations for randomized controlled trials to serve as guidance for study designs and as a tool for quality assessment when reviewing published clinical trials in our specialty. Examples of calculations are shown for 2-arm parallel trials applicable to orthodontics. The working examples are analyzed, and the implications of design or inherent complexities in each category are discussed.