13 resultados para Infection dynamics

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An epidemiological and molecular survey on the occurrence of Echinococcus hydatid cysts in livestock was conducted in Greece. In total 898 sheep, 483 goats, 38 buffaloes, 273 wild boars and 15 deer were examined and 30.2% (6.45% cyst fertility), 7.86% (3.2% cyst fertility), 42% (7.9% cyst fertility), 1.1% (0% cyst fertility), 0% of them were found infected, respectively. Infection rate in different geographical regions varied between 26.1 and 53.8% (cyst fertility 2.04 and 34.6%) in sheep, 7.33 and 13.3% (cyst fertility 0 and 3.2%) in goats. Genotyping, based on cox1 and nad1 analyses, demonstrated the predominance of E. granulosus s.s. (G1 genotype). The presence of one single genotype-complex within a relatively large spectrum of intermediate host species in Greece indicates the presence of a dominant transmission dog-sheep cycle involving additional host species which may act as disease reservoir for human infections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this Opinion piece, I argue that the dynamics of viruses and the cellular immune response depend on the body size of the host. I use allometric scaling theory to interpret observed quantitative differences in the infection dynamics of lymphocytic choriomeningitis virus (LCMV) in mice (Mus musculus), simian immunodeficiency virus (SIV) in rhesus macaques (Macaca mulatta) and human immunodeficiency virus (HIV) in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methods are described for working with Nosema apis and Nosema ceranae in the field and in the laboratory. For fieldwork, different sampling methods are described to determine colony level infections at a given point in time, but also for following the temporal infection dynamics. Suggestions are made for how to standardise field trials for evaluating treatments and disease impact. The laboratory methods described include different means for determining colony level and individual bee infection levels and methods for species determination, including light microscopy, electron microscopy, and molecular methods (PCR). Suggestions are made for how to standardise cage trials, and different inoculation methods for infecting bees are described, including control methods for spore viability. A cell culture system for in vitro rearing of Nosema spp. is described. Finally, how to conduct different types of experiments are described, including infectious dose, dose effects, course of infection and longevity tests

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Footrot is a widespread problem in Swiss sheep farming. The objectives of this study were to determine whether flocks which were clinically free from footrot carry virulent strains of Dichelobacter nodosus, and to describe the infection dynamics for flocks and individual sheep. To this purpose, a new PCR-diagnostic tool was used, which is able to distinguish benign from virulent D. nodosus. Nine farms were examined three times at intervals of 6 months. Cotton swabs were used to collect samples from the interdigital skin to analyze for the presence of virulent and benign strains of D. nodosus. Additionally, epidemiological data of the farms were collected with the aid of a standardized questionnaire. On four farms, benign strains were diagnosed at each visit; in one farm, benign strains were detected once only. Two flocks revealed sheep infected with virulent D. nodosus throughout the study but without clinical evidence of footrot. In two flocks, the virulent strains of D. nodosus were introduced into the flock during the study period. In one farm, clinical symptoms of virulent footrot were evident only two weeks after the positive finding by PCR. Only individual sheep with previously negative status, but none with previously benign status became infected with virulent strains during the study. The newly developed competitive RT PCR proved to be more sensitive than clinical diagnosis for detecting footrot infection in herds, as it unequivocally classified the four flocks as infected with virulent D. nodosus, even though they did not show clinical signs at the times of sampling. This early detection may be crucial to the success of any control program. Both new infections with virulent strains could be explained by contact with sheep from herds with virulent D. nodosus as evaluated from the questionnaires. These results show that the within-herd eradication of footrot becomes possible using the competitive PCR assay to specifically diagnose virulent D. nodosus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dynamic deterministic simulation model was developed to assess the impact of different putative control strategies on the seroprevalence of Neospora caninum in female Swiss dairy cattle. The model structure comprised compartments of "susceptible" and "infected" animals (SI-model) and the cattle population was divided into 12 age classes. A reference model (Model 1) was developed to simulate the current (status quo) situation (present seroprevalence in Switzerland 12%), taking into account available demographic and seroprevalence data of Switzerland. Model 1 was modified to represent four putative control strategies: testing and culling of seropositive animals (Model 2), discontinued breeding with offspring from seropositive cows (Model 3), chemotherapeutic treatment of calves from seropositive cows (Model 4), and vaccination of susceptible and infected animals (Model 5). Models 2-4 considered different sub-scenarios with regard to the frequency of diagnostic testing. Multivariable Monte Carlo sensitivity analysis was used to assess the impact of uncertainty in input parameters. A policy of annual testing and culling of all seropositive cattle in the population reduced the seroprevalence effectively and rapidly from 12% to <1% in the first year of simulation. The control strategies with discontinued breeding with offspring from all seropositive cows, chemotherapy of calves and vaccination of all cattle reduced the prevalence more slowly than culling but were still very effective (reduction of prevalence below 2% within 11, 23 and 3 years of simulation, respectively). However, sensitivity analyses revealed that the effectiveness of these strategies depended strongly on the quality of the input parameters used, such as the horizontal and vertical transmission factors, the sensitivity of the diagnostic test and the efficacy of medication and vaccination. Finally, all models confirmed that it was not possible to completely eradicate N. caninum as long as the horizontal transmission process was not interrupted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the impact of screening programmes in reducing the prevalence of Chlamydia trachomatis, mathematical and computational models are used as a guideline for decision support. Unfortunately, large uncertainties exist about the parameters that determine the transmission dynamics of C. trachomatis. Here, we use a SEIRS (susceptible-exposed-infected-recovered-susceptible) model to critically analyze the turnover of C. trachomatis in a population and the impact of a screening programme. We perform a sensitivity analysis on the most important steps during an infection with C. trachomatis. Varying the fraction of the infections becoming symptomatic as well as the duration of the symptomatic period within the range of previously used parameter estimates has little effect on the transmission dynamics. However, uncertainties in the duration of temporary immunity and the asymptomatic period can result in large differences in the predicted impact of a screening programme. We therefore analyze previously published data on the persistence of asymptomatic C. trachomatis infection in women and estimate the mean duration of the asymptomatic period to be longer than anticipated so far, namely 433 days (95% CI: 420-447 days). Our study shows that a longer duration of the asymptomatic period results in a more pronounced impact of a screening programme. However, due to the slower turnover of the infection, a substantial reduction in prevalence can only be achieved after screening for several years or decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular immune responses during acute Hepatitis C virus (HCV) and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s) within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%). The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background New HIV infections in men who have sex with men (MSM) have increased in Switzerland since 2000 despite combination antiretroviral therapy (cART). The objectives of this mathematical modelling study were: to describe the dynamics of the HIV epidemic in MSM in Switzerland using national data; to explore the effects of hypothetical prevention scenarios; and to conduct a multivariate sensitivity analysis. Methodology/Principal Findings The model describes HIV transmission, progression and the effects of cART using differential equations. The model was fitted to Swiss HIV and AIDS surveillance data and twelve unknown parameters were estimated. Predicted numbers of diagnosed HIV infections and AIDS cases fitted the observed data well. By the end of 2010, an estimated 13.5% (95% CI 12.5, 14.6%) of all HIV-infected MSM were undiagnosed and accounted for 81.8% (95% CI 81.1, 82.4%) of new HIV infections. The transmission rate was at its lowest from 1995–1999, with a nadir of 46 incident HIV infections in 1999, but increased from 2000. The estimated number of new infections continued to increase to more than 250 in 2010, although the reproduction number was still below the epidemic threshold. Prevention scenarios included temporary reductions in risk behaviour, annual test and treat, and reduction in risk behaviour to levels observed earlier in the epidemic. These led to predicted reductions in new infections from 2 to 26% by 2020. Parameters related to disease progression and relative infectiousness at different HIV stages had the greatest influence on estimates of the net transmission rate. Conclusions/Significance The model outputs suggest that the increase in HIV transmission amongst MSM in Switzerland is the result of continuing risky sexual behaviour, particularly by those unaware of their infection status. Long term reductions in the incidence of HIV infection in MSM in Switzerland will require increased and sustained uptake of effective interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.