18 resultados para Immersion in water
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present ab initio quantum calculation of the optical properties of formamide in vapor phase and in water solution. We employ time dependent density functional theory for the isolated molecule and many-body perturbation theory methods for the system in solution. An average over several molecular dynamics snapshots is performed to take into account the disorder of the liquid. We find that the excited stateproperties of the gas-phase formamide are strongly modified by the presence of the water solvent: the geometry of the molecule is distorted and the electronic and optical properties are severely modified. The important interaction among the formamide and the water molecules forces us to use fully quantum methods for the calculation of the excited stateproperties of this system. The excitonic wave function is localized both on the solute and on part of the solvent.
Resumo:
The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.
Resumo:
The likelihood that comets may have delivered part of the water to Earth has been reinforced by the recent observation of the earth-like D/H ratio in Jupiter-family comet 103P/Hartley 2 by Hartogh et al. (2011). Prior to this observation, results from several Oort cloud comets indicated a factor of 2 enrichment of deuterium relative to the abundance at Earth. The European Space Agency’s Rosetta spacecraft will encounter comet 67P/Churyumov-Gerasimenko, another Jupiter-family comet of likely Kuiper belt origin, in 2014 and accompany it from almost aphelion to and past perihelion. Onboard Rosetta is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) which consists of two mass spectrometers and a pressure sensor [Balsiger et al. 2007]. With its unprecedented mass resolution, for a space-borne instrument, the Double Focusing Mass Spectrometer (DFMS), one of the major subsystems of ROSINA, will be able to obtain unambiguously the ratios of the isotopes in water from in situ measurements in the coma around the comet. We will discuss the performance of this sensor on the basis of measurements of the terrestrial hydrogen and oxygen isotopic ratios performed with the flight spare instrument in the lab. We also show that the instrument on Rosetta is capable of measuring the D/H even in the very low density water background released by the spacecraft. This capability demonstrates that ROSINA should obtain very sensitive measurements of these ratios in the cometary environment. These measurements will allow detection of fractionation as function of the distance from the nucleus as well as fractionation due to mechanisms that are correlated with heliocentric distance.
Resumo:
One significant challenge for the operationalization of water justice arises from the many dynamic scales involved. In this paper we explore the scalar dimension of justice in water governance through the insights derived from empirical research on hydropower production in the Swiss Alps and the application of the geographical concept of politics of scale. More specifically, we investigate how different actors frame the justice problem, the scales that they invoke and which actors consequently get included or excluded in their justice assessments. This study shows that there is no ideal scale for justice evaluations; whichever scale is used, some actors and justice claims are included whereas others are excluded. This is particularly true when using Fraser’s trivalent concept of justice, taking into account issues of distribution, recognition and participation where each calls for its own set of scales. Moreover, focusing on the politics of scale framing, our study reveals that the justice claim itself can become a power element. Consequently, to achieve more just water governance, there is not only a need for debate and negotiations about the conceptions and meanings of justice in a specific context, there is also a need for debate about the relevance and implications of divergent scales involved in justice claims.
Resumo:
OBJECTIVES To establish an effective alfaxalone concentration to be used for bath immersion of fire-bellied toads (Bombina orientalis) and to describe its effects. STUDY DESIGN Prospective experimental study. ANIMALS Thirteen oriental fire-bellied toads. METHODS The study was carried out in two phases. The pilot phase involved five animals and aimed to identify an alfaxalone concentration capable of producing induction of anesthesia, defined as immobility with a head down position and loss of responsiveness to stimulation with a stick. The following trial in an additional eight toads used the effective alfaxalone concentration established during the pilot phase. Data from 11 animals (three toads in the pilot study and the eight additional toads) were analyzed. Twenty minutes after immersion in the anesthetic solution, the toads were removed from the bath, and heart rate, respiratory rate, the righting, myotactic and the nociceptive withdrawal reflexes were evaluated every 5 minutes. The loss of both righting and nociceptive withdrawal reflexes was considered indicative of a surgical depth of anesthesia. The time elapsed from anesthetic induction to return of righting reflex, the quality of recovery and the occurrence of undesired effects were observed and recorded. RESULTS Immersion was found to be a suitable anesthetic technique for oriental fire-bellied toads and 200 mg L(-1) alfaxalone concentration produced anesthetic induction in 10 out of 11 toads. Side effects, such as skin irritation, erythema and changes in cutaneous pigmentation, were not observed in any animal. The duration of anesthesia ranged from 10 to 30 minutes after removal of the toads from the alfaxalone bath, and surgical depth of anesthesia was never achieved. CONCLUSIONS AND CLINICAL RELEVANCE It was concluded that alfaxalone anesthesia induced by immersion in a concentration of 200 mg L(-1) is only suitable for toads undergoing non-invasive short procedures.
Resumo:
BACKGROUND Flavobacterium psychrophilum is the agent of Bacterial Cold Water Disease and Rainbow Trout Fry Syndrome, two diseases leading to high mortality. Pathogen detection is mainly carried out using cultures and more rapid and sensitive methods are needed. RESULTS We describe a qPCR technique based on the single copy gene β' DNA-dependent RNA polymerase (rpoC). Its detection limit was 20 gene copies and the quantification limit 103 gene copies per reaction. Tests on spiked spleens with known concentrations of F. psychrophilum (106 to 101 cells per reaction) showed no cross-reactions between the spleen tissue and the primers and probe. Screening of water samples and spleens from symptomless and infected fishes indicated that the pathogen was already present before the outbreaks, but F. psychrophilum was only quantifiable in spleens from diseased fishes. CONCLUSIONS This qPCR can be used as a highly sensitive and specific method to detect F. psychrophilum in different sample types without the need for culturing. qPCR allows a reliable detection and quantification of F. psychrophilum in samples with low pathogen densities. Quantitative data on F. psychrophilum abundance could be useful to investigate risk factors linked to infections and also as early warning system prior to potential devastating outbreak.
Resumo:
Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.