71 resultados para Imaging, Three-Dimensional

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In tissue engineering, a variety of methods are commonly used to evaluate survival of cells inside tissues or three-dimensional (3D) carriers. Among these methods confocal laser scanning microscopy opened accessibility of 3D tissue using live cell imaging into the tissue or 3D scaffolds. However, although this technique is ideally applied to 3D tissue or scaffolds with thickness up to several millimetres, this application is surprisingly rare and scans are often done on slices with thickness <20 μm. Here, we present novel protocols for the staining of 3D tissue (e.g. intervertebral disc tissue) and scaffolds, such as fibrin gels or alginate beads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to identify the anatomy of pineal region venous complex using neuronavigation software when distorted by the presence of a space-occupying lesion and to describe the anatomical relationship between lesion and veins. Moreover we discuss its influence on the choice of the surgical strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. MATERIAL AND METHODS: The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared with the corresponding variables obtained by the 3D MOCART score using the Pearson correlation coefficient; additionally the subjective quality and possible artifacts of the MR sequences were analyzed. RESULTS: The correlation between the standard 2D MOCART score and the new 3D MOCART showed for the 8 variables "defect fill," "cartilage interface," "surface," "adhesions," "structure," "signal intensity," "subchondral lamina," and "effusion"-a highly significant (P < 0.001) correlation with a Pearson coefficient between 0.566 and 0.932. The variable "bone marrow edema" correlated significantly (P < 0.05; Pearson coefficient: 0.257). The subjective quality of the 3 standard MR sequences was comparable to the isotropic 3D-TrueFISP sequence. Artifacts were more frequently visible within the 3D-TrueFISP sequence. CONCLUSION: In the clinical routine follow-up after cartilage repair, the 3D MOCART score, assessed by only 1 high-resolution isotropic MR sequence, provides comparable information than the standard 2D MOCART score. Hence, the new 3D MOCART score has the potential to combine the information of the standard 2D MOCART score with the possible advantages of isotropic 3D MRI at high-field. A clear limitation of the 3D-TrueFISP sequence was the high number of artifacts. Future studies have to prove the clinical benefits of a 3D MOCART score.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to establish and validate a three-dimensional imaging protocol for the assessment of Computed Tomography (CT) scans of abdominal aortic aneurysms in UK EVAR trials patients. Quality control and repeatability of anatomical measurements is important for the validity of any core laboratory. METHODS: Three different observers performed anatomical measurements on 50 preoperative CT scans of aortic aneurysms using the Vitrea 2 three-dimensional post-imaging software in a core laboratory setting. We assessed the accuracy of intra and inter observer repeatability of measurements, the time required for collection of measurements, 3 different levels of automation and 3 different automated criteria for measurement of neck length. RESULTS: None of the automated neck length measurements demonstrated sufficient accuracy and it was necessary to perform checking of the important automated landmarks. Good intra and limited inter observer agreement were achieved with three-dimensional assessment. Complete assessment of the aneurysm and iliacs took an average (SD) of 17.2 (4.1) minutes. CONCLUSIONS: Aortic aneurysm anatomy can be assessed reliably and quickly using three-dimensional assessment but for scans of limited quality, manual checking of important landmarks remains necessary. Using a set protocol, agreement between observers is satisfactory but not as good as within observers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Current guidelines for evaluating cleft palate treatments are mostly based on two-dimensional (2D) evaluation, but three-dimensional (3D) imaging methods to assess treatment outcome are steadily rising. OBJECTIVE To identify 3D imaging methods for quantitative assessment of soft tissue and skeletal morphology in patients with cleft lip and palate. DATA SOURCES Literature was searched using PubMed (1948-2012), EMBASE (1980-2012), Scopus (2004-2012), Web of Science (1945-2012), and the Cochrane Library. The last search was performed September 30, 2012. Reference lists were hand searched for potentially eligible studies. There was no language restriction. STUDY SELECTION We included publications using 3D imaging techniques to assess facial soft tissue or skeletal morphology in patients older than 5 years with a cleft lip with/or without cleft palate. We reviewed studies involving the facial region when at least 10 subjects in the sample size had at least one cleft type. Only primary publications were included. DATA EXTRACTION Independent extraction of data and quality assessments were performed by two observers. RESULTS Five hundred full text publications were retrieved, 144 met the inclusion criteria, with 63 high quality studies. There were differences in study designs, topics studied, patient characteristics, and success measurements; therefore, only a systematic review could be conducted. Main 3D-techniques that are used in cleft lip and palate patients are CT, CBCT, MRI, stereophotogrammetry, and laser surface scanning. These techniques are mainly used for soft tissue analysis, evaluation of bone grafting, and changes in the craniofacial skeleton. Digital dental casts are used to evaluate treatment and changes over time. CONCLUSION Available evidence implies that 3D imaging methods can be used for documentation of CLP patients. No data are available yet showing that 3D methods are more informative than conventional 2D methods. Further research is warranted to elucidate it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The objective of the study is to investigate the electrocortical and the global cognitive effects of 3 months rivastigmine medication in a group of mild to moderate Alzheimer's disease patients. MATERIALS AND METHODS Multichannel EEG and cognitive performances measured with the Mini Mental State Examination in a group of 16 patients with mild to moderate Alzheimer's Disease were collected before and 3 months after the onset of rivastigmine medication. RESULTS Spectral analysis of the EEG data showed a significant power decrease in the delta and theta frequency bands during rivastigmine medication, i.e., a shift of the power spectrum towards 'normalization'. Three-dimensional low resolution electromagnetic tomography (LORETA) functional imaging localized rivastigmine effects in a network that includes left fronto-parietal regions, posterior cingulate cortex, bilateral parahippocampal regions, and the hippocampus. Moreover, a correlation analysis between differences in the cognitive performances during the two recordings and LORETA-computed intracortical activity showed, in the alpha1 frequency band, better cognitive performance with increased cortical activity in the left insula. CONCLUSION The results point to a 'normalization' of the EEG power spectrum due to medication, and the intracortical localization of these effects showed an increase of cortical activity in frontal, parietal, and temporal regions that are well-known to be affected in Alzheimer's disease. The topographic convergence of the present results with the memory network proposed by Vincent et al. (J. Neurophysiol. 96:3517-3531, 2006) leads to the speculation that in our group of patients, rivastigmine specifically activates brain regions that are involved in memory functions, notably a key symptom in this degenerative disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise intraoperative assessment of the architecture of the biliary tree could reduce lesions to intra- or extrahepatic bile ducts. The aim of this study was to test feasibility of intraoperative three-dimensional imaging during liver resections. Isocentric C-arm fluoroscopy acquires three-dimensional images during a 190 degrees orbital rotation. The bile ducts were displayed three-dimensionally by realtime rotational projections or multiplanar reconstructions. The technique was established ex vivo in a preserved cadaveric human liver. Intraoperative three-dimensional cholangiography was performed in five patients with centrally located liver malignancies. Complete data acquisition in 3 patients depicted precise anatomical details of the architecture of the biliary tree up to third order divisions. Biliary imaging can be improved by the application of real-time intraoperative three-dimensional cholangiography. For the development of computer-aided navigation in hepatobiliary procedures, this technique could be an important prerequisite for defining landmarks of the liver in a three-dimensional space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The standard technique of two-dimensional intra-arterial digital subtraction angiography (2D-DSA) for the imaging of experimental rabbit aneurysms is invasive and has considerable surgical risks. Therefore, minimally invasive techniques ideally providing three-dimensional imaging for intervention planning and follow-up are needed. This study evaluates the feasibility and quality of three-dimensional 3-T magnetic resonance angiography (3D-3T-MRA) and compares 3D-3T-MRA with 2D-DSA in experimental aneurysms in the rabbit. METHOD: Three microsurgically created aneurysms in three rabbits were evaluated using 2D-DSA and 3D-3T-MRA. Imaging of the aneurysms was performed 2 weeks after creation using 2D-DSA and contrast-enhanced (CE) MRA. Measurements included aneurysm dome (length and width) and aneurysm neck. Aneurysm volumes were determined using CE-MRA. RESULTS: The measurements of the aneurysms' dimensions and the evaluation of vicinity vessels with both techniques showed a good correlation. The mean aneurysm length, aneurysm width and neck width measured with DSA (6.9, 4.1 and 2.8 mm, respectively) correlated with the measurements performed in 3D-3T-MRA (6.9, 4 and 2.5 mm, respectively). The mean aneurysm volumes measured with CE-MRA was 46.7 mm(3). CONCLUSION: 3D-3T CE-MRA is feasible and less invasive and is a safer imaging alternative to DSA for experimental aneurysm. Additionally, aneurysm technique this precise offers the possibility of repetitive 3D aneurysm volumetry for long-term follow-up studies after endovascular aneurysm occlusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To evaluate the accuracy and reproducibility of aortic annulus sizing using a multislice computed tomography (MSCT) based aortic root reconstruction tool compared with conventional imaging among patients evaluated for transcatheter aortic valve replacement (TAVR). Methods and results: Patients referred for TAVR underwent standard preprocedural assessment of aortic annulus parameters using MSCT, angiography and transoesophageal echocardiography (TEE). Three-dimensional (3-D) reconstruction of MSCT images of the aortic root was performed using 3mensio (3mensio Medical Imaging BV, Bilthoven, The Netherlands), allowing for semi-automated delineation of the annular plane and assessment of annulus perimeter, area, maximum, minimum and virtual diameters derived from area and perimeter (aVD and pVD). A total of 177 patients were enrolled. We observed a good inter-observer variability of 3-D reconstruction assessments with concordance coefficients for agreement of 0.91 (95% CI: 0.87-0.93) and 0.91 (0.88-0.94) for annulus perimeter and area assessments, respectively. 3-D derived pVD and aVD correlated very closely with a concordance coefficient of 0.97 (0.96-0.98) with a mean difference of 0.5±0.3 mm (pVD-aVD). 3-D derived pVD showed the best, but moderate concordance with diameters obtained from coronal MSCT (0.67, 0.56-0.75; 0.3±1.8 mm), and the lowest concordance with diameters obtained from TEE (0.42, 0.31-0.52; 1.9±1.9 mm). Conclusions: MSCT-based 3-D reconstruction of the aortic annulus using the 3mensio software enables accurate and reproducible assessment of aortic annulus dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. MATERIALS AND METHODS Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. RESULTS Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. CONCLUSION Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.