5 resultados para INTEGRAL-EQUATIONS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this talk, we present a coupled system of integral equations for the πN → πN (s-channel) and ππ → N̅N (t-channel) lowest partial waves, derived from Roy–Steiner equations for pion–nucleon scattering. After giving a brief overview of this system of equations, we present the solution of the t-channel sub-problem by means of Muskhelishvili–Omnès techniques, and solve the s-channel sub-problem after finding a set of phase shifts and subthreshold parameters which satisfy the Roy–Steiner equations.
Resumo:
We present a coupled system of integral equations for the pp → ¯NN and ¯K K → ¯N N S-waves derived from Roy–Steiner equations for pion–nucleon scattering. We discuss the solution of the corresponding two-channel Muskhelishvili–Omnès problem and apply the results to a dispersive analysis of the scalar form factor of the nucleon fully including ¯KK intermediate states. In particular, we determine the corrections Ds and DD, which are needed for the extraction of the pion– nucleon s term from pN scattering, and show that the difference DD −Ds = (−1.8±0.2)MeV is insensitive to the input pN parameters.
Resumo:
We establish the convergence of pseudospectra in Hausdorff distance for closed operators acting in different Hilbert spaces and converging in the generalised norm resolvent sense. As an assumption, we exclude the case that the limiting operator has constant resolvent norm on an open set. We extend the class of operators for which it is known that the latter cannot happen by showing that if the resolvent norm is constant on an open set, then this constant is the global minimum. We present a number of examples exhibiting various resolvent norm behaviours and illustrating the applicability of this characterisation compared to known results.