20 resultados para Hydrogen atom scattering

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r1/r potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-relativistic hydrogen atom enjoys an accidental SO(4) symmetry, that enlarges the rotational SO(3) symmetry, by extending the angular momentum algebra with the Runge–Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson–Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius R with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter γ, in general the accidental SO(4) symmetry is lifted. However, for R=(l+1)(l+2)a (where a is the Bohr radius and l is the orbital angular momentum) some degeneracy remains when γ=∞ or γ = 2/R. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of R and γ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to 1 /| x | 2 . The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius R. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if R is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal structure of kyzylkumite, ideally Ti2V3+O5(OH), from the Sludyanka complex in South Baikal, Russia was solved and refined (including the hydrogen atom position) to an agreement index, R1, of 2.34 using X-ray diffraction data collected on a twinned crystal. Kyzylkumite crystallizes in space group P21/c, with a = 8.4787(1), b = 4.5624(1), c = 10.0330(1) Å, β = 93.174(1)°, V = 387.51(1) Å3 and Z = 4. Tivanite, TiV3+O3OH, and kyzylkumite have modular structures based on hexagonal close packing of oxygen, which are made up of rutile TiO2 and montroseite V3+O(OH) slices. In tivanite the rutile:montroseite ratio is 1:1, in kyzylkumite the ratio is 2:1. The montroseite module may be replaced by the isotypic paramontroseite V4+O2 module, which produces a phase with the formula Ti2V4+O6. In the metamorphic rocks of the Sludyanka complex, vanadium can be present as V4+ and V3+ within the same mineral (e.g. in batisivite, schreyerite and berdesinskiite). Kyzylkumite has a flexible composition with respect to the M4+/M3+ ratio. The relationship between kyzylkumite and a closely related Be-bearing kyzylkumite-like mineral with an orthorhombic norbergite-type structure from Byrud mine, Norway is discussed. Both minerals have similar X-ray powder diffraction patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The results of a search for hydrogen-like atoms consisting of π∓K±π∓K± mesons are presented. Evidence for πK atom production by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen in terms of characteristic πK pairs from their breakup in the same target (178±49178±49) as well as in terms of produced πK atoms (653±42653±42). Using these results, the analysis yields a first value for the πK atom lifetime of View the MathML sourceτ=(2.5−1.8+3.0) fs and a first measurement of the S-wave isospin-odd πK scattering length View the MathML source|a0−|=13|a1/2−a3/2|=(0.11−0.04+0.09)Mπ−1 (aIaI for isospin I).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many years a combined analysis of pionic hydrogen and deuterium atoms has been known as a good tool to extract information on the isovector and especially on the isoscalar s-wave pN scattering length. However, given the smallness of the isoscalar scattering length, the analysis becomes useful only if the pion–deuteron scattering length is controlled theoretically to a high accuracy comparable to the experimental precision. To achieve the required few-percent accuracy one needs theoretical control over all isospin-conserving three-body pNN !pNN operators up to one order before the contribution of the dominant unknown (N†N)2pp contact term. This term appears at next-to-next-to-leading order in Weinberg counting. In addition, one needs to include isospin-violating effects in both two-body (pN) and three-body (pNN) operators. In this talk we discuss the results of the recent analysis where these isospin-conserving and -violating effects have been carefully taken into account. Based on this analysis, we present the up-to-date values of the s-wave pN scattering lengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion–nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion– nucleon and pion–deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion–deuteron system, and discuss the subtleties regarding the definition of the pion–nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon–nucleon scattering. Based on the p±p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a1/2/ g= (170.5±2.0) · 10−3M−1p and a3/2/ g= (−86.5±1.8) · 10−3M−1p .