8 resultados para Hermitian Yang–Mills instantons
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
Resumo:
Purpose: Development of an interpolation algorithm for re‐sampling spatially distributed CT‐data with the following features: global and local integral conservation, avoidance of negative interpolation values for positively defined datasets and the ability to control re‐sampling artifacts. Method and Materials: The interpolation can be separated into two steps: first, the discrete CT‐data has to be continuously distributed by an analytic function considering the boundary conditions. Generally, this function is determined by piecewise interpolation. Instead of using linear or high order polynomialinterpolations, which do not fulfill all the above mentioned features, a special form of Hermitian curve interpolation is used to solve the interpolation problem with respect to the required boundary conditions. A single parameter is determined, by which the behavior of the interpolation function is controlled. Second, the interpolated data have to be re‐distributed with respect to the requested grid. Results: The new algorithm was compared with commonly used interpolation functions based on linear and second order polynomial. It is demonstrated that these interpolation functions may over‐ or underestimate the source data by about 10%–20% while the parameter of the new algorithm can be adjusted in order to significantly reduce these interpolation errors. Finally, the performance and accuracy of the algorithm was tested by re‐gridding a series of X‐ray CT‐images. Conclusion: Inaccurate sampling values may occur due to the lack of integral conservation. Re‐sampling algorithms using high order polynomialinterpolation functions may result in significant artifacts of the re‐sampled data. Such artifacts can be avoided by using the new algorithm based on Hermitian curve interpolation
Resumo:
We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.
Resumo:
We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.
Resumo:
Asynchronous level crossing sampling analog-to-digital converters (ADCs) are known to be more energy efficient and produce fewer samples than their equidistantly sampling counterparts. However, as the required threshold voltage is lowered, the number of samples and, in turn, the data rate and the energy consumed by the overall system increases. In this paper, we present a cubic Hermitian vector-based technique for online compression of asynchronously sampled electrocardiogram signals. The proposed method is computationally efficient data compression. The algorithm has complexity O(n), thus well suited for asynchronous ADCs. Our algorithm requires no data buffering, maintaining the energy advantage of asynchronous ADCs. The proposed method of compression has a compression ratio of up to 90% with achievable percentage root-mean-square difference ratios as a low as 0.97. The algorithm preserves the superior feature-to-feature timing accuracy of asynchronously sampled signals. These advantages are achieved in a computationally efficient manner since algorithm boundary parameters for the signals are extracted a priori.
Resumo:
We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.