77 resultados para HIPS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: To determine the feasibility of assessing early osteoarthritis (OA) in hips with femoroacetabular impingement (FAI) using delayed Gadolinium enhanced MRI of Cartilage (dGEMRIC). MATERIALS AND METHODS: Thirty-seven hips in 30 patients who had a dGEMRIC scan and radiographic evidence of FAI were identified. Clinical symptoms were assessed. Radiographic measurements were performed to determine acetabular and femoral morphology. The severity of radiographic OA was determined using Tönnis grade and minimum joint space width (JSW). On MRI, the alpha angle was measured on the sagittal oblique slices. Correlations between dGEMRIC index, patient symptoms, morphologic measurements, radiographic OA, and age were determined. RESULTS: Significant correlations were observed between dGEMRIC index, pain (P < 0.05), and alpha angle (P < 0.05). The correlation of dGEMRIC with alpha angle suggests that hips with more femoral deformity show signs of early OA. CONCLUSION: The results of osteoplasty for FAI depend on the amount of pre-existing OA in the joint. dGEMRIC may be a useful technique for diagnosis and staging of early osteoarthritis in hips with impingement.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.
Resumo:
BACKGROUND Residual acetabular dysplasia is seen in combination with femoral pathomorphologies including an aspherical femoral head and valgus neck-shaft angle with high antetorsion. It is unclear how these femoral pathomorphologies affect range of motion (ROM) and impingement zones after periacetabular osteotomy. QUESTIONS/PURPOSES (1) Does periacetabular osteotomy (PAO) restore the typically excessive ROM in dysplastic hips compared with normal hips; (2) how do impingement locations differ in dysplastic hips before and after PAO compared with normal hips; (3) does a concomitant cam-type morphology adversely affect internal rotation; and (4) does a concomitant varus-derotation intertrochanteric osteotomy (IO) affect external rotation? METHODS Between January 1999 and March 2002, we performed 200 PAOs for dysplasia; of those, 27 hips (14%) met prespecified study inclusion criteria, including availability of a pre- and postoperative CT scan that included the hip and the distal femur. In general, we obtained those scans to evaluate the pre- and postoperative acetabular and femoral morphology, the degree of acetabular reorientation, and healing of the osteotomies. Three-dimensional surface models based on CT scans of 27 hips before and after PAO and 19 normal hips were created. Normal hips were obtained from a population of CT-based computer-assisted THAs using the contralateral hip after exclusion of symptomatic hips or hips with abnormal radiographic anatomy. Using validated and computerized methods, we then determined ROM (flexion/extension, internal- [IR]/external rotation [ER], adduction/abduction) and two motion patterns including the anterior (IR in flexion) and posterior (ER in extension) impingement tests. The computed impingement locations were assigned to anatomical locations of the pelvis and the femur. ROM was calculated separately for hips with (n = 13) and without (n = 14) a cam-type morphology and PAOs with (n = 9) and without (n = 18) a concomitant IO. A post hoc power analysis based on the primary research question with an alpha of 0.05 and a beta error of 0.20 revealed a minimal detectable difference of 4.6° of flexion. RESULTS After PAO, flexion, IR, and adduction/abduction did not differ from the nondysplastic control hips with the numbers available (p ranging from 0.061 to 0.867). Extension was decreased (19° ± 15°; range, -18° to 30° versus 28° ± 3°; range, 19°-30°; p = 0.017) and ER in 0° flexion was increased (25° ± 18°; range, -10° to 41° versus 38° ± 7°; range, 17°-41°; p = 0.002). Dysplastic hips had a higher prevalence of extraarticular impingement at the anteroinferior iliac spine compared with normal hips (48% [13 of 27 hips] versus 5% [one of 19 hips], p = 0.002). A PAO increased the prevalence of impingement for the femoral head from 30% (eight of 27 hips) preoperatively to 59% (16 of 27 hips) postoperatively (p = 0.027). IR in flexion was decreased in hips with a cam-type deformity compared with those with a spherical femoral head (p values from 0.002 to 0.047 for 95°-120° of flexion). A concomitant IO led to a normalization of ER in extension (eg, 37° ± 7° [range, 21°-41°] of ER in 0° of flexion in hips with concomitant IO compared with 38° ± 7° [range, 17°-41°] in nondysplastic control hips; p = 0.777). CONCLUSIONS Using computer simulation of hip ROM, we could show that the PAO has the potential to restore the typically excessive ROM in dysplastic hips. However, a PAO can increase the prevalence of secondary intraarticular impingement of the aspherical femoral head and extraarticular impingement of the anteroinferior iliac spines in flexion and internal rotation. A cam-type morphology can result in anterior impingement with restriction of IR. Additionally, a valgus hip with high antetorsion can result in posterior impingement with decreased ER in extension, which can be normalized with a varus derotation IO of the femur. However, indication of an additional IO needs to be weighed against its inherent morbidity and possible complications. The results are based on a limited number of hips with a pre- and postoperative CT scan after PAO. Future prospective studies are needed to verify the current results based on computer simulation and to test their clinical importance.
An Increased Iliocapsularis-to-rectus-femoris Ratio Is Suggestive for Instability in Borderline Hips
Resumo:
BACKGROUND The iliocapsularis muscle is an anterior hip structure that appears to function as a stabilizer in normal hips. Previous studies have shown that the iliocapsularis is hypertrophied in developmental dysplasia of the hip (DDH). An easy MR-based measurement of the ratio of the size of the iliocapsularis to that of adjacent anatomical structures such as the rectus femoris muscle might be helpful in everyday clinical use. QUESTIONS/PURPOSES We asked (1) whether the iliocapsularis-to-rectus-femoris ratio for cross-sectional area, thickness, width, and circumference is increased in DDH when compared with hips with acetabular overcoverage or normal hips; and (2) what is the diagnostic performance of these ratios to distinguish dysplastic from pincer hips? METHODS We retrospectively compared the anatomy of the iliocapsularis muscle between two study groups with symptomatic hips with different acetabular coverage and a control group with asymptomatic hips. The study groups were selected from a series of patients seen at the outpatient clinic for DDH or femoroacetabular impingement. The allocation to a study group was based on conventional radiographs: the dysplasia group was defined by a lateral center-edge (LCE) angle of < 25° with a minimal acetabular index of 14° and consisted of 45 patients (45 hips); the pincer group was defined by an LCE angle exceeding 39° and consisted of 37 patients (40 hips). The control group consisted of 30 asymptomatic hips (26 patients) with MRIs performed for nonorthopaedic reasons. The anatomy of the iliocapsularis and rectus femoris muscle was evaluated using MR arthrography of the hip and the following parameters: cross-sectional area, thickness, width, and circumference. The iliocapsularis-to-rectus-femoris ratio of these four anatomical parameters was then compared between the two study groups and the control group. The diagnostic performance of these ratios to distinguish dysplasia from protrusio was evaluated by calculating receiver operating characteristic (ROC) curves and the positive predictive value (PPV) for a ratio > 1. Presence and absence of DDH (ground truth) were determined on plain radiographs using the previously mentioned radiographic parameters. Evaluation of radiographs and MRIs was performed in a blinded fashion. The PPV was chosen because it indicates how likely a hip is dysplastic if the iliocapsularis-to-rectus-femoris ratio was > 1. RESULTS The iliocapsularis-to-rectus-femoris ratio for cross-sectional area, thickness, width, and circumference was increased in hips with radiographic evidence of DDH (ratios ranging from 1.31 to 1.35) compared with pincer (ratios ranging from 0.71 to 0.90; p < 0.001) and compared with the control group, the ratio of cross-sectional area, thickness, width, and circumference was increased (ratios ranging from 1.10 to 1.15; p ranging from 0.002 to 0.039). The area under the ROC curve ranged from 0.781 to 0.852. For a one-to-one iliocapsularis-to-rectus-femoris ratio, the PPV was 89% (95% confidence interval [CI], 73%-96%) for cross-sectional area, 77% (95% CI, 61%-88%) for thickness, 83% (95% CI, 67%-92%) for width, and 82% (95% CI, 67%-91%) for circumference. CONCLUSIONS The iliocapsularis-to-rectus-femoris ratio seems to be a valuable secondary sign of DDH. This parameter can be used as an adjunct for clinical decision-making in hips with borderline hip dysplasia and a concomitant cam-type deformity to identify the predominant pathology. Future studies will need to prove this finding can help clinicians determine whether the borderline dysplasia accounts for the hip symptoms with which the patient presents. LEVEL OF EVIDENCE Level III, prognostic study.
An examination chair to measure internal rotation of the hip in routine settings: a validation study
Resumo:
OBJECTIVE: To determine the performance of a newly developed examination chair as compared with the clinical standard of assessing internal rotation (IR) of the flexed hip with a goniometer.
METHODS: The examination chair allowed measurement of IR in a sitting position simultaneously in both hips, with hips and knees flexed 90 degrees, lower legs hanging unsupported and a standardized load of 5 kg applied to both ankles using a bilateral pulley system. Clinical assessment of IR was performed in supine position with hips and knees flexed 90 degrees using a goniometer. Within the framework of a population-based inception cohort study, we calculated inter-observer agreement in two samples of 84 and 64 consecutive, unselected young asymptomatic males using intra-class correlation coefficients (ICC) and determined the correlation between IR assessed with examination chair and clinical assessment.
RESULTS: Inter-observer agreement was excellent for the examination chair (ICC right hip, 0.92, 95% confidence interval [CI] 0.89-0.95; ICC left hip, 0.90, 95% CI 0.86-0.94), and considerably higher than that seen with clinical assessment (ICC right hip, 0.65, 95% CI 0.49-0.77; ICC left hip, 0.69, 95% CI 0.54-0.80, P for difference in ICC between examination chair and clinical assessment
Resumo:
Seven patients with symptomatic osteochondritic lesions of the femoral head are presented. All were male with a mean age of 26 years (16 - 33 years). Two distinct morphologic appearances of the hip joint could be identified. Five patients presented with a coxa valga deformity, four of whom had signs of epiphyseal dysplasia. There were 2 patients whose hips appeared normal apart from the osteochondrontic lesions. In both cases an additional acetabular rim lesion due to a reproducible femoro-acetabular impingement was diagnosed at arthrotomy. This may have acted as the underlying cause of osteochondritis dissecans in these cases. All 7 patients underwent surgical treatment. An intertrochanteric osteotomy (I.O.) alone was performed in 2 patients. Follow-up of these patients at 6.5 and 8.5 years after surgery revealed that the osteochondritic lesions had not healed and one individual remained symptomatic. In the remaining 5 patients, treatment consisted of femoral head dislocation and screw fixation of the osteochondritic lesion. This was combined with an I.O. in two of these patients for coxa valga and osteoplasty of a broad femoral neck in 2 other patients. All lesions had healed at an average follow-up of 4.3 years (2 - 8.5 years). Three patients were asymptomatic and 2 patients had minor residual pain. No progressive osteoarthritic changes or signs of avascular necrosis of the femoral head were observed.
Resumo:
Surgical dislocation of the hip in the treatment of acetabular fractures allows the femoral head to be safely displaced from the acetabulum. This permits full intra-articular acetabular and femoral inspection for the evaluation and potential treatment of cartilage lesions of the labrum and femoral head, reduction of the fracture under direct vision and avoidance of intra-articular penetration with hardware. We report 60 patients with selected types of acetabular fracture who were treated using this approach. Six were lost to follow-up and the remaining 54 were available for clinical and radiological review at a mean follow-up of 4.4 years (2 to 9). Substantial damage to the intra-articular cartilage was found in the anteromedial portion of the femoral head and the posterosuperior aspect of the acetabulum. Labral lesions were predominantly seen in the posterior acetabular area. Anatomical reduction was achieved in 50 hips (93%) which was considerably higher than that seen in previous reports. There were no cases of avascular necrosis. Four patients subsequently required total hip replacement. Good or excellent results were achieved in 44 hips (81.5%). The cumulative eight-year survivorship was 89.0% (95% confidence interval 84.5 to 94.1). Significant predictors of poor outcome were involvement of the acetabular dome and lesions of the femoral cartilage greater than grade 2. The functional mid-term results were better than those of previous reports. Surgical dislocation of the hip allows accurate reduction and a predictable mid-term outcome in the management of these difficult injuries without the risk of the development of avascular necrosis.
Resumo:
Although the ischial spine sign (ISS) has been advocated to detect acetabular retroversion, it is unknown whether the sign is valid on anteroposterior (AP) pelvic radiographs with tilted or rotated pelves. We therefore evaluated reliability of the ISS as a tool for diagnosing acetabular retroversion in the presence of considerable pelvic tilt and/or malrotation. We obtained radiographs of 20 cadaver pelves in 19 different malorientations resulting in 380 pelvis images (760 hips) for evaluation. In addition, 129 clinical radiographs of patients' hips that had varying pelvis orientations were reviewed. We found an overall sensitivity of 81% (90%), specificity of 70% (71%), positive predictive value of 77% (80.7%), and negative predictive value of 75% (85%) in the cadaver (patient) hips. Our data suggest the ISS is a valid tool for diagnosing acetabular retroversion on plain radiographs taken using a standardized technique regardless of the degree of pelvic tilt and rotation.
Resumo:
OBJECTIVE: The aim of this study was to assess the glycosaminoglycan (GAG) content in hip joint cartilage in mature hips with a history of slipped capital femoral epiphysis (SCFE) using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). METHODS: 28 young-adult subjects (32 hips) with a mean age of 23.8+/-4.0 years (range: 18.1-30.5 years) who were treated for mild or moderate SCFE in adolescence were included into the study. Hip function and clinical symptoms were evaluated with the Harris hip score (HHS) system at the time of MRI. Plain radiographic evaluation included Tonnis grading, measurement of the minimal joint space width (JSW) and alpha-angle measurement. The alpha-angle values were used to classify three sub-groups: group 1=subjects with normal femoral head-neck offset (alpha-angle <50 degrees ), group 2=subjects with mild offset decrease (alpha-angle 50 degrees -60 degrees ), and group 3=subjects with severe offset decrease (alpha-angle >60 degrees ). RESULTS: There was statistically significant difference noted for the T1(Gd) values, lateral and central, between group 1 and group 3 (p-values=0.038 and 0.041). The T1(Gd) values measured within the lateral portion were slightly lower compared with the T1(Gd) values measured within the central portion that was at a statistically significance level (p-value <0.001). HHS, Tonnis grades and JSW revealed no statistically significant difference. CONCLUSION: By using dGEMRIC in the mid-term follow-up of SCFE we were able to reveal degenerative changes even in the absence of joint space narrowing that seem to be related to the degree of offset pathology. The dGEMRIC technique may be a potential diagnostic modality in the follow-up evaluation of SCFE.
Resumo:
Aim of this study was to assess the glycosaminoglycan content in hip joint cartilage in mature hips with a history of Legg-Calvé-Perthes (LCPD) disease using delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC).
Resumo:
Poliomyelitis results in a flaccid paralysis of muscles that can lead to hip instability. The objective of this study was to determine the results of the Bernese periacetabular osteotomy in patients with paralytic hips secondary to poliomyelitis.
Resumo:
Objective Femoroacetabular impingement may be a risk factor for hip osteoarthritis in men. An underlying hip deformity of the cam type is common in asymptomatic men with nondysplastic hips. This study was undertaken to examine whether hip deformities of the cam type are associated with signs of hip abnormality, including labral lesions and articular cartilage damage, detectable on magnetic resonance imaging (MRI). Methods In this cross-sectional, population-based study in asymptomatic young men, 1,080 subjects underwent clinical examination and completed a self-report questionnaire. Of these subjects, 244 asymptomatic men with a mean age of 19.9 years underwent MRI. All MRIs were read for cam-type deformities, labral lesions, cartilage thickness, and impingement pits. The relationship between cam-type deformities and signs of joint damage were examined using logistic regression models adjusted for age and body mass index. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were determined. Results Sixty-seven definite cam-type deformities were detected. These deformities were associated with labral lesions (adjusted OR 2.77 [95% CI 1.31, 5.87]), impingement pits (adjusted OR 2.9 [95% CI 1.43, 5.93]), and labral deformities (adjusted OR 2.45 [95% CI 1.06, 5.66]). The adjusted mean difference in combined anterosuperior femoral and acetabular cartilage thickness was −0.19 mm (95% CI −0.41, 0.02) lower in those with cam-type deformities compared to those without. Conclusion Our findings indicate that the presence of a cam-type deformity is associated with MRI-detected hip damage in asymptomatic young men.
Resumo:
Surgical navigation might increase the safety of osteochondroplasty procedures in patients with femoroacetabular impingement. Feasibility and accuracy of navigation of a surgical reaming device were assessed. Three-dimensional models of 18 identical sawbone femora and 5 cadaver hips were created. Custom software was used to plan and perform repeated computer-assisted osteochondroplasty procedures using a navigated burr. Postoperative 3-dimensional models were created and compared with the preoperative models. A Bland-Altmann analysis assessing α angle and offset ratio accuracy showed even distribution along the zero line with narrow confidence intervals. No differences in α angle and offset ratio accuracy (P = 0.486 and P = 0.2) were detected between both observers. Planning and conduction of navigated osteochondroplasty using a surgical reaming device is feasible and accurate.