6 resultados para Geodesics on Riemannian manifolds

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the theory of Peres and Schlag to obtain generic lower bounds for Hausdorff dimension of images of sets by orthogonal projections on simply connected two-dimensional Riemannian manifolds of constant curvature. As a conclusion we obtain appropriate versions of Marstrand's theorem, Kaufman's theorem, and Falconer's theorem in the above geometrical settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds Σ by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold Σ, which is easily evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove analogs of classical almost sure dimension theorems for Euclidean projection mappings in the first Heisenberg group, equipped with a sub-Riemannian metric.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Note we present the basic features of the theory of Lipschitz maps within Carnot groups as it is developed in [8], and we prove that intrinsic Lipschitz domains in Carnot groups are uniform domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article gives a short introduction into the notions of density property (DP) and volume density property (VDP). Moreover we develop an effective criterion of verifying whether a given X has VDP. As an application of this method we give a new proof of the basic fact that the product of two Stein manifolds with VDP admits VDP.