4 resultados para GIBBS FORMALISM
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The theory on the intensities of 4f-4f transitions introduced by B.R. Judd and G.S. Ofelt in 1962 has become a center piece in rare-earth optical spectroscopy over the past five decades. Many fundamental studies have since explored the physical origins of the Judd–Ofelt theory and have proposed numerous extensions to the original model. A great number of studies have applied the Judd–Ofelt theory to a wide range of rare-earth doped materials, many of them with important applications in solid-state lasers, optical amplifiers, phosphors for displays and solid state lighting, upconversion and quantum-cutting materials, and fluorescent markers. This paper takes the view of the experimentalist who is interested in appreciating the basic concepts, implications, assumptions, and limitations of the Judd–Ofelt theory in order to properly apply it to practical problems. We first present the formalism for calculating the wavefunctions of 4f electronic states in a concise form and then show their application to the calculation and fitting of 4f-4f transition intensities. The potential, limitations and pitfalls of the theory are discussed, and a detailed case study of LaCl3:Er3+ is presented.
Resumo:
We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e. they do not percolate a.s. at low activity.
Resumo:
We derive explicit lower and upper bounds for the probability generating functional of a stationary locally stable Gibbs point process, which can be applied to summary statistics such as the F function. For pairwise interaction processes we obtain further estimates for the G and K functions, the intensity, and higher-order correlation functions. The proof of the main result is based on Stein's method for Poisson point process approximation.
Resumo:
We obtain upper bounds for the total variation distance between the distributions of two Gibbs point processes in a very general setting. Applications are provided to various well-known processes and settings from spatial statistics and statistical physics, including the comparison of two Lennard-Jones processes, hard core approximation of an area interaction process and the approximation of lattice processes by a continuous Gibbs process. Our proof of the main results is based on Stein's method. We construct an explicit coupling between two spatial birth-death processes to obtain Stein factors, and employ the Georgii-Nguyen-Zessin equation for the total bound.