16 resultados para GENETIC EVALUATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
After a proper medical history, growth analysis and physical examination of a short child, followed by radiological and laboratory screening, the clinician may decide to perform genetic testing. We propose several clinical algorithms that can be used to establish the diagnosis. GH1 and GHRHR should be tested in children with severe isolated growth hormone deficiency and a positive family history. A multiple pituitary dysfunction can be caused by defects in several genes, of which PROP1 and POU1F1 are most common. GH resistance can be caused by genetic defects in GHR, STAT5B, IGF1, IGFALS, which all have their specific clinical and biochemical characteristics. IGF-I resistance is seen in heterozygous defects of the IGF1R. If besides short stature additional abnormalities are present, these should be matched with known dysmorphic syndromes. If no obvious candidate gene can be determined, a whole genome approach can be taken to check for deletions, duplications and/or uniparental disomies.
Resumo:
The breeding program for beef cattle in Japan has changed dramatically over 4 decades. Visual judging was done initially, but progeny testing in test stations began in 1968. In the 1980s, the genetic evaluation program using field records, so-called on-farm progeny testing, was first adopted in Oita, Hyogo, and Kumamoto prefectures. In this study, genetic trends for carcass traits in these 3 Wagyu populations were estimated, and genetic gains per year were compared among the 3 different beef cattle breeding programs. The field carcass records used were collected between 1988 and 2003. The traits analyzed were carcass weight, LM area, rib thickness, s.c. fat thickness, and beef marbling standard number. The average breeding values of reproducing dams born the same year were used to estimate the genetic trends for the carcass traits. For comparison of the 3 breeding programs, birth years of the dams were divided into 3 periods reflecting each program. Positive genetic trends for beef marbling standard number were clearly shown in all populations. The genetic gains per year for all carcass traits were significantly enhanced by adopting the on-farm progeny testing program. These results indicate that the on-farm progeny testing program with BLUP is a very powerful approach for genetic improvement of carcass traits in Japanese Wagyu beef cattle.
Resumo:
Clinical manifestations of lactase (LCT) deficiency include intestinal and extra-intestinal symptoms. Lactose hydrogen breath test (H2-BT) is considered the gold standard to evaluate LCT deficiency (LD). Recently, the single-nucleotide polymorphism C/T(-13910) has been associated with LD. The objectives of the present study were to evaluate the agreement between genetic testing of LCT C/T(-13910) and lactose H2-BT, and the diagnostic value of extended symptom assessment. Of the 201 patients included in the study, 194 (139 females; mean age 38, range 17-79 years, and 55 males, mean age 38, range 18-68 years) patients with clinical suspicion of LD underwent a 3-4 h H2-BT and genetic testing for LCT C/T(-13910). Patients rated five intestinal and four extra-intestinal symptoms during the H2-BT and then at home for the following 48 h. Declaring H2-BT as the gold standard, the CC(-13910) genotype had a sensitivity of 97% and a specificity of 95% with a of 0.9 in diagnosing LCT deficiency. Patients with LD had more intense intestinal symptoms 4 h following the lactose challenge included in the H2-BT. We found no difference in the intensity of extra-intestinal symptoms between patients with and without LD. Symptom assessment yielded differences for intestinal symptoms abdominal pain, bloating, borborygmi and diarrhoea between 120 min and 4 h after oral lactose challenge. Extra-intestinal symptoms (dizziness, headache and myalgia) and extension of symptom assessment up to 48 h did not consistently show different results. In conclusion, genetic testing has an excellent agreement with the standard lactose H2-BT, and it may replace breath testing for the diagnosis of LD. Extended symptom scores and assessment of extra-intestinal symptoms have limited diagnostic value in the evaluation of LD.
Resumo:
Hatchery fish stocking for stock enhancement has been operated at a massive and global scale. However, the use of hatchery fish as a means of stock enhancement is highly controversial, and little is known about its effects on wild stock and consequences for stock enhancement. Here we review the scientific literature on this subject in order to address a fundamental - question is hatchery stocking a help or harm for wild stock and stock enhancement? We summarized 266 peer-reviewed papers that were published in the last 50 years, which describe empirical case studies on ecology and genetics of hatchery stocks and their effects on stock enhancement. Specifically, we asked whether hatchery stock and wild stock differed in fitness and the level of genetic variation, and whether stocking affected population abundance. Seventy studies contained comparisons between hatchery and wild stocks, out of which 23 studies showed significantly negative effects of hatchery rearing on the fitness of stocked fish, and 28 studies showed reduced genetic variation in hatchery populations. None of these studies suggested a positive genetic effect on the fitness of hatchery-reared individuals after release. These results suggest that negative effects of hatchery rearing are not just a concern but undeniably present in many aquaculture species. In a few cases, however, no obvious effect of hatchery rearing was observed, and a positive contribution of hatchery stock to the abundance of fish populations was indicated. These examples suggest that there is a chance to improve hatchery practices and mitigate the negative effects on wild stocks, although scientific data supporting the positive effect on stock enhancement are largely missing at this moment. Technically, microsatellite-based parentage assignments have been proven as a useful tool for the evaluation of reproductive fitness in natural settings, which is a key for stock enhancement by hatchery-based stocking. We discuss implications of these results, as well as their limitations and future directions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4 protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family.
Resumo:
Chronic alcohol consumption is a major cause of liver cirrhosis which, however, develops in only a minority of heavy drinkers. Evidence from twin studies indicates that genetic factors account for at least 50% of individual susceptibility. The contribution of genetic factors to the development of diseases may be investigated either by means of animal experiments, through linkage studies in families of affected patients, or population based case-control studies. With regard to the latter, single nucleotide polymorphisms of genes involved in the degradation of alcohol, antioxidant defense, necroinflammation, and formation and degradation of extracellular matrix are attractive candidates for studying genotype-phenotype associations. However, many associations in early studies were found to be spurious and could not be confirmed in stringently designed investigations. Therefore, future genotype-phenotype studies in alcoholic liver disease should meet certain requirements in order to avoid pure chance observations due to a lack of power, false functional interpretation, and insufficient statistical evaluation.
Resumo:
An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximately 141 thousand years ago (Kya), an exit out-of-Africa approximately 51 Kya, and a recent colonization of the Americas approximately 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.
Resumo:
INTRODUCTION: Liver cirrhosis develops only in a minority of heavy drinkers. Genetic factors may account for some variation in the progression of fibrosis in alcoholic liver disease (ALD). Transforming growth factor beta 1 (TGFbeta1) is a key profibrogenic cytokine in fibrosis and its gene contains several polymorphic sites. A single nucleotide polymorphism at codon 25 has been suggested to affect fibrosis progression in patients with chronic hepatitis C virus infection, fatty liver disease, and hereditary hemochromatosis. Its contribution to the progression of ALD has not been investigated sufficiently so far. PATIENTS AND METHODS: One-hundred-and-fifty-one heavy drinkers without apparent ALD, 149 individuals with alcoholic cirrhosis, and 220 alcoholic cirrhotics who underwent liver transplantation (LTX) were genotyped for TGFbeta1 codon 25 variants. RESULTS: Univariate analysis suggested that genotypes Arg/Pro or Pro/Pro are associated with decompensated liver cirrhosis requiring LTX. However, after adjusting for patients' age these genotypes did not confer a significant risk for cirrhosis requiring LTX. CONCLUSION: TGFbeta1 codon 25 genotypes Arg/Pro or Pro/Pro are not associated with alcoholic liver cirrhosis. Our study emphasizes the need for adequate statistical methods and accurate study design when evaluating the contribution of genetic variants to the course of chronic liver diseases.
Resumo:
Aim of this paper is to evaluate the diagnostic contribution of various types of texture features in discrimination of hepatic tissue in abdominal non-enhanced Computed Tomography (CT) images. Regions of Interest (ROIs) corresponding to the classes: normal liver, cyst, hemangioma, and hepatocellular carcinoma were drawn by an experienced radiologist. For each ROI, five distinct sets of texture features are extracted using First Order Statistics (FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray Level Difference Method (GLDM), Laws' Texture Energy Measures (TEM), and Fractal Dimension Measurements (FDM). In order to evaluate the ability of the texture features to discriminate the various types of hepatic tissue, each set of texture features, or its reduced version after genetic algorithm based feature selection, was fed to a feed-forward Neural Network (NN) classifier. For each NN, the area under Receiver Operating Characteristic (ROC) curves (Az) was calculated for all one-vs-all discriminations of hepatic tissue. Additionally, the total Az for the multi-class discrimination task was estimated. The results show that features derived from FOS perform better than other texture features (total Az: 0.802+/-0.083) in the discrimination of hepatic tissue.
Resumo:
There is constant pressure to improve evaluation of animal genetic resources in order to prevent their erosion. Maintaining the integrity of livestock species as well as their genetic diversity is of paramount interest for long-term agricultural policies. One major use of DNA techniques in conservation is to reveal genetic diversity within and between populations. Forty-one microsatellites were analysed to assess genetic diversity in nine Swiss sheep breeds and to measure the loss of the overall diversity when one breed would become extinct. The expected heterozygosities varied from 0.65 to 0.74 and 10.8% of the total genetic diversity can be explained by the variation among breeds. Based on the proportion of shared alleles, each of the nine breeds were clearly defined in their own cluster in the neighbour-joining tree describing the relationships among the breeds. Bayesian clustering methods assign individuals to groups based on their genetic similarity and infer the number of populations. In STRUCTURE, this approach pooled the Valais Blacknose and the Valais Red. With BAPS method the two Valais sheep breeds could be separated. Caballero & Toro approach (2002) was used to calculate the loss or gain of genetic diversity when each of the breeds would be removed from the set. The changes in diversity based on between-breed variation ranged from -12.2% (Valais Blacknose) to 0% (Swiss Black Brown Mountain and Mirror Sheep); based on within-breed diversity the removal of a breed could also produce an increase in diversity (-0.6% to + 0.6%). Allelic richness ranged from 4.9 (Valais Red) to 6.7 (Brown Headed Meat sheep and Red Engadine Sheep). Breed conservation decisions cannot be limited to genetic diversity alone. In Switzerland, conservation goals are embedded in the desire to carry the cultural legacy over to future generations.
Resumo:
BACKGROUND From January 2011 onward, the Swiss newborn screening (NBS) program has included a test for cystic fibrosis (CF). In this study, we evaluate the first year of implementation of the CF-NBS program. METHODS The CF-NBS program consists of testing in two steps: a heel prick sample is drawn (= Guthrie test) for measurement of immunoreactive trypsinogen (IRT) and for DNA screening. All children with a positive screening test are referred to a CF center for further diagnostic testing (sweat test and genetic analysis). After assessment in the CF center, the parents are given a questionnaire. All the results of the screening process and the parent questionnaires were centrally collected and evaluated. RESULTS In 2011, 83 198 neonates were screened, 84 of whom (0.1%) had a positive screening result and were referred to a CF center. 30 of these 84 infants were finally diagnosed with CF (positive predictive value: 35.7%). There was an additional infant with CF and meconium ileus whose IRT value was normal. The 31 diagnosed children with CF correspond to an incidence of 1 : 2683. The average time from birth to genetically confirmed diagnosis was 34 days (range: 13-135). 91% of the parents were satisfied that their child had undergone screening. All infants receiving a diagnosis of CF went on to receive further professional care in a CF center. CONCLUSION The suggested procedure for CF-NBS has been found effective in practice; there were no major problems with its implementation. It reached high acceptance among physicians and parents.
Resumo:
OBJECTIVE To perform long QT syndrome and catecholaminergic polymorphic ventricular tachycardia cardiac channel postmortem genetic testing (molecular autopsy) for a large cohort of cases of autopsy-negative sudden unexplained death (SUD). METHODS From September 1, 1998, through October 31, 2010, 173 cases of SUD (106 males; mean ± SD age, 18.4 ± 12.9 years; age range, 1-69 years; 89% white) were referred by medical examiners or coroners for a cardiac channel molecular autopsy. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, a comprehensive mutational analysis of the long QT syndrome susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) and a targeted analysis of the catecholaminergic polymorphic ventricular tachycardia type 1-associated gene (RYR2) were conducted. RESULTS Overall, 45 putative pathogenic mutations absent in 400 to 700 controls were identified in 45 autopsy-negative SUD cases (26.0%). Females had a higher yield (26/67 [38.8%]) than males (19/106 [17.9%]; P<.005). Among SUD cases with exercise-induced death, the yield trended higher among the 1- to 10-year-olds (8/12 [66.7%]) compared with the 11- to 20-year-olds (4/27 [14.8%]; P=.002). In contrast, for those who died during a period of sleep, the 11- to 20-year-olds had a higher yield (9/25 [36.0%]) than the 1- to 10-year-olds (1/24 [4.2%]; P=.01). CONCLUSION Cardiac channel molecular autopsy should be considered in the evaluation of autopsy-negative SUD. Several interesting genotype-phenotype observations may provide insight into the expected yields of postmortem genetic testing for SUD and assist in selecting cases with the greatest potential for mutation discovery and directing genetic testing efforts.
Resumo:
The long QT syndrome (LQTS) is a genetic disorder characterized by prolongation of the QT interval in the electrocardiogram (ECG) and a propensity to "torsades de pointes" ventricular tachycardia frequently leading to syncope, cardiac arrest, or sudden death usually in young otherwise healthy individuals. LQTS caused by mutations of predominantly potassium and sodium ion channel genes or channel-interacting proteins leading to positive overcharge of myocardial cell with consequent heterogeneous prolongation of repolarization in various layers and regions of myocardium. These conditions facilitate the early after-depolarization and reentry phenomena underlying development of polymorphic ventricular tachycardia observed in patients with LQTS. Obtaining detailed patient history regarding cardiac events in the patient and his/her family members combined with careful interpretation of standard 12-lead ECG (with precise measurement of QT interval in all available ECGs and evaluation of T-wave morphology) usually is sufficient to diagnose the syndrome. The LQTS show great genetic heterogeneity and has been identified more than 500 mutations distributed in 10 genes: KCNQ1, HERG, SCN5A, KCNE1, KCNE2, ANKB, KCNJ2, CACNA1A, CAV3 and SCN4B. Despite advances in the field, 25-30% of patients remain undiagnosed genetic. Genetic testing plays an important role and is particularly useful in cases with nondiagnostic or borderline ECG findings.
Resumo:
The objective of this study was to assess the prevalence of renal cysts and other renal abnormalities in purebred Maine Coon cats, and to characterise these through genetic typing. Voluntary pre-breeding screening programmes for polycystic kidney disease (PKD) are offered for this breed throughout Switzerland, Germany and other northern European countries. We performed a retrospective evaluation of Maine Coon screening for renal disease at one institution over an 8-year period. Renal ultrasonography was performed in 187 healthy Maine Coon cats. Renal changes were observed in 27 of these cats. Renal cysts were found in seven cats, and were mostly single and unilateral (6/7, 85.7%), small (mean 3.6 mm) and located at the corticomedullary junction (4/6, 66.7%). Sonographical changes indicating chronic kidney disease (CKD) were observed in 10/187 (5.3%) cats and changes of unknown significance were documented in 11/187 (5.9%) cats. All six cats genetically tested for PKD1 were negative for the mutation, and gene sequencing of these cats did not demonstrate any common genetic sequences. Cystic renal disease occurs with a low prevalence in Maine Coons and is unrelated to the PKD observed in Persians and related breeds. Ultrasonographical findings compatible with CKD are not uncommon in juvenile Maine Coons.