41 resultados para Field assisted sintering technique
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The excimer laser-assisted nonocclusive anastomosis (ELANA) technique enables large-caliber bypass revascularization without temporary occlusion of the parent artery.
Resumo:
OBJECT: Patients with complex craniocerebral pathophysiologies such as giant cerebral aneurysms, skull base tumors, and/or carotid artery occlusive disease are candidates for a revascularization procedure to augment or preserve cerebral blood flow. However, the brain is susceptible to ischemia, and therefore the excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed to overcome temporary occlusion. Harvesting autologous vessels of reasonable quality, which is necessary for this technique, may at times be problematic or impossible due to the underlying systemic vascular disease. The use of artificial vessels is therefore an alternative graft for revascularization. Note, however, that it is unknown to what degree these grafts are subject to occlusion using the ELANA anastomosis technique. Therefore, the authors studied the ELANA technique in combination with an expanded polytetrafluoroethylene (ePTFE) graft. METHODS: The experimental surgeries involved bypassing the abdominal aorta in the rabbit. Ten rabbits were subjected to operations representing 20 ePTFE graft-ELANA end-to-side anastomoses. Intraoperative blood flow, followup angiograms, and long-term histological characteristics were assessed 75, 125, and 180 days postoperatively. Angiography results proved long-term patency of ePTFE grafts in all animals at all time points studied. Data from the histological analysis showed minimal intimal reaction at the anastomosis site up to 180 days postoperatively. Endothelialization of the ePTFE graft was progressive over time. CONCLUSIONS: The ELANA technique in combination with the ePTFE graft seems to have favorable attributes for end-to-side anastomoses and may be suitable for bypass procedures.
Resumo:
CASE DESCRIPTION A 7-year-old 573-kg (1,261 -lb) Swiss Warmblood gelding was evaluated because of signs of acute abdominal pain. CLINICAL FINDINGS Physical examination revealed a markedly distended abdomen with subjectively reduced borborygmi in all abdominal quadrants. A large, gas-distended viscus was present at the pelvic brim preventing complete palpation of the abdomen per rectum. Ultrasonographic evaluation could not be safely performed in the initial evaluation because of severe signs of abdominal pain. TREATMENT AND OUTCOME Ventral midline celiotomy was performed, and right dorsal displacement of the ascending colon was corrected. Progressive signs of abdominal pain after surgery prompted repeat ventral midline celiotomy, and small intestinal incarceration in a large, radial mesojejunal rent was detected. The incarceration was reduced, but the defect was not fully accessible for repair via the celiotomy. Repair of the mesenteric defect was not attempted, and conservative management was planned after surgery; however, signs of colic returned. A standard laparoscopic approach was attempted from both flanks in the standing patient, but the small intestine could not be adequately mobilized for full evaluation of the rent. Hand-assisted laparoscopic surgery (HALS) allowed identification and reduction of jejunal incarceration and repair of the mesenteric rent. Although minor ventral midline incisional complications were encountered, the horse recovered fully. CLINICAL RELEVANCE HALS techniques should be considered for repair of mesenteric rents in horses. In the horse of this report, HALS facilitated identification, evaluation, and repair of a large radial mesenteric rent that was not accessible from a ventral median celiotomy.
Resumo:
STATE OF THE ART The proximal median nerve compression syndrome includes the pronator teres and the Kiloh-Nevin syndrome. This article presents a new surgical technique of endoscopic assisted median nerve decompression. MATERIAL AND SURGICAL TECHNIQUE Endoscopic scissor decompression of the median nerve is always performed under plexus anaesthesia. It includes 6 key steps documented in this article. We review the indications and limitations of the surgical technique. RESULTS Since 2011, three clinical series have highlighted the advantages of this technique. Functional and subjective results are discussed. We also review the limitations of the technique and its potential for future development. CONCLUSION Although clinical results after endoscopic assisted decompression of the median nerve appear excellent they still need to be compared with conventional techniques. Clinical studies are likely to develop primarily due to the mini-invasive nature of this new surgical technique.
Resumo:
Since October 2011, the enzymatic lysis of Dupuytren's cord was introduced in Switzerland (Xiapex(®), Auxilium Pharmaceuticals, Pfizer). Here we present our first university experience and underline the major role of ultrasound during the injection. Between December 2011 and February 2013, 52 injections were performed to eliminate 43 Dupuytren's cords in 33 patients. The mean age of the patients was 64.4 ± 8.5 years. Complications were documented for each patient. Before, directly after and after a minimum of 6 months post-injection, the contracture of the treated joint was measured with use of a goniometer. The DASH score was evaluated after a minimum of 6 months and the patients were asked to subjectively evaluate the outcome of the treatment (very good, good, mild, poor) and whether they would reiterate it if necessary. Four skin defects, one lymphangitis, and one CRPS were responsible for a complication rate of 18%. There was no infection and no tendon rupture in the series. The mean MCP joint contracture was respectively 36.8 ± 27.4°, 3.5 ± 7.8° (gain of mobility compared to the preoperative situation 33.3°, P<0.001), and 8.4 ± 13.9° (gain 28.4°, P<0.001) respectively before, just after and at the long-term clinical control. The mean PIP joint contracture was respectively 36.5 ± 29.1°, 5.9 ± 6.7° (gain 30.6°, P<0.001), and 15.1 ± 13.8° (gain 21.4°, P<0.001) respectively before injection, just after and at the long-term clinical control. The DASH score decreased from 24 ± 14 to 7 ± 9 (P<0.001). Eighty-one per cent of the patients were satisfied or very satisfied of the treatment. All but two would reiterate the treatment if necessary. Ultrasound is able to target the injection of collagenase in order to reduce complications. The short-term results of this non-invasive therapy are very promising however comparison with conventional procedures is difficult as the long-term results are lacking.
Resumo:
OBJECTIVES To compare the free-hand (FH) technique of placing interlocking screws to a commercially available electromagnetic (EM) targeting system in terms of operating time, radiation dose, and accuracy of screw placement. METHODS Between September 2011 and July 2012, we prospectively randomized 100 consecutive femur shaft fractures in 99 patients requiring intramedullary nails to either FH using fluoroscopy (n = 43) or EM targeting (n = 38; Sureshot). SETTING Single Level 1 University Hospital Trauma Center. MAIN OUTCOME MEASUREMENTS The 2 groups were assessed for distal locking with respect to time, radiation, and accuracy. RESULTS Eight-one fractures had data accurately recorded (38 EM/43 FH). The average total operative time was 50 minutes (range, 25-88 minutes; SD, 13.9 minutes) for the FH group and 57 minutes (range, 40-103 minutes; SD, 16.12 minutes) for the EM group. The average time for distal locking was 10 minutes (range, 4-16 minutes; SD, 3.56 minutes) with FH and 11 minutes (range, 6-28 minutes; SD, 10.24 minutes) with EM. Average radiation dose for distal locking was significantly less (P < 0.0001) for EM at 230.54 μGy (range, 51-660 μGy; SD, 0.17 μGy) compared with 690.27 μGy (range, 200-2310 μGy; SD, 0.52 μGy) for FH. There were 2 misplaced drill bits in FH and 3 in EM. This was not statistically significant (P = 0.888). CONCLUSIONS The electromagnetic targeting device (Sureshot) significantly reduced radiation exposure during placement of distal interlocking screws, without sacrificing operative time, and was equivalent in accuracy when compared with the FH technique. LEVEL OF EVIDENCE Therapeutic level II.
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.
Resumo:
In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.
Resumo:
Angioplasty and stenting of the IA have been reported with high technical and clinical success rates, low complication rates and good mid-term patency rates. Different antegrade or retrograde endovascular catheter-based approaches and combinations with surgical exposure of the CCA are used. The purpose of this study was to determine safety, efficacy and mid-term clinical and radiological outcome of the stent-assisted treatment of atherosclerotic stenotic disease of the IA with special focus on the different technical approaches.
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.