12 resultados para Field Programmable Gate Array

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupolemass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The generation of collimated electron beams from metal double-gate nanotip arrays excited by near infrared laser pulses is studied. Using electromagnetic and particle tracking simulations, we showed that electron pulses with small rms transverse velocities are efficiently produced from nanotip arrays by laser-induced field emission with the laser wavelength tuned to surface plasmon polariton resonance of the stacked double-gate structure. The result indicates the possibility of realizing a metal nanotip array cathode that outperforms state-of-the-art photocathodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to evaluate the feasibility and reproducibility of high-resolution magnetic resonance imaging (MRI) and quantitative T2 mapping of the talocrural cartilage within a clinically applicable scan time using a new dedicated ankle coil and high-field MRI. MATERIALS AND METHODS: Ten healthy volunteers (mean age 32.4 years) underwent MRI of the ankle. As morphological sequences, proton density fat-suppressed turbo spin echo (PD-FS-TSE), as a reference, was compared with 3D true fast imaging with steady-state precession (TrueFISP). Furthermore, biochemical quantitative T2 imaging was prepared using a multi-echo spin-echo T2 approach. Data analysis was performed three times each by three different observers on sagittal slices, planned on the isotropic 3D-TrueFISP; as a morphological parameter, cartilage thickness was assessed and for T2 relaxation times, region-of-interest (ROI) evaluation was done. Reproducibility was determined as a coefficient of variation (CV) for each volunteer; averaged as root mean square (RMSA) given as a percentage; statistical evaluation was done using analysis of variance. RESULTS: Cartilage thickness of the talocrural joint showed significantly higher values for the 3D-TrueFISP (ranging from 1.07 to 1.14 mm) compared with the PD-FS-TSE (ranging from 0.74 to 0.99 mm); however, both morphological sequences showed comparable good results with RMSA of 7.1 to 8.5%. Regarding quantitative T2 mapping, measurements showed T2 relaxation times of about 54 ms with an excellent reproducibility (RMSA) ranging from 3.2 to 4.7%. CONCLUSION: In our study the assessment of cartilage thickness and T2 relaxation times could be performed with high reproducibility in a clinically realizable scan time, demonstrating new possibilities for further investigations into patient groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present chapter gives a comprehensive introduction into the display and quantitative characterization of scalp field data. After introducing the construction of scalp field maps, different interpolation methods, the effect of the recording reference and the computation of spatial derivatives are discussed. The arguments raised in this first part have important implications for resolving a potential ambiguity in the interpretation of differences of scalp field data. In the second part of the chapter different approaches for comparing scalp field data are described. All of these comparisons can be interpreted in terms of differences of intracerebral sources either in strength, or in location and orientation in a nonambiguous way. In the present chapter we only refer to scalp field potentials, but mapping also can be used to display other features, such as power or statistical values. However, the rules for comparing and interpreting scalp field potentials might not apply to such data. Generic form of scalp field data Electroencephalogram (EEG) and event-related potential (ERP) recordings consist of one value for each sample in time and for each electrode. The recorded EEG and ERP data thus represent a two-dimensional array, with one dimension corresponding to the variable “time” and the other dimension corresponding to the variable “space” or electrode. Table 2.1 shows ERP measurements over a brief time period. The ERP data (averaged over a group of healthy subjects) were recorded with 19 electrodes during a visual paradigm. The parietal midline Pz electrode has been used as the reference electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a conceptual prototype model of a focal plane array unit for the STEAMR instrument, highlighting the challenges presented by the required high relative beam proximity of the instrument and focus on how edge-diffraction effects contribute to the array's performance. The analysis was carried out as a comparative process using both PO & PTD and MoM techniques. We first highlight general differences between these computational techniques, with the discussion focusing on diffractive edge effects for near-field imaging reflectors with high truncation. We then present the results of in-depth modeling analyses of the STEAMR focal plane array followed by near-field antenna measurements of a breadboard model of the array. The results of these near-field measurements agree well with both simulation techniques although MoM shows slightly higher complex beam coupling to the measurements than PO & PTD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High brightness electron sources are of great importance for the operation of the hard X-ray free electron lasers. Field emission cathodes based on the double-gate metallic field emitter arrays (FEAs) can potentially offer higher brightness than the currently used ones. We report on the successful application of electron beam lithography for fabrication of the large-scale single-gate as well as double-gate FEAs. We demonstrate operational high-density single-gate FEAs with sub-micron pitch and total number of tips up to 106 as well as large-scale double-gate FEAs with large collimation gate apertures. The details of design, fabrication procedure and successful measurements of the emission current from the single- and double-gate cathodes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the course of this study, stiffness of a fibril array of mineralized collagen fibrils modeled with a mean field method was validated experimentally at site-matched two levels of tissue hierarchy using mineralized turkey leg tendons (MTLT). The applied modeling approaches allowed to model the properties of this unidirectional tissue from nanoscale (mineralized collagen fibrils) to macroscale (mineralized tendon). At the microlevel, the indentation moduli obtained with a mean field homogenization scheme were compared to the experimental ones obtained with microindentation. At the macrolevel, the macroscopic stiffness predicted with micro finite element (μFE) models was compared to the experimental stiffness measured with uniaxial tensile tests. Elastic properties of the elements in μFE models were injected from the mean field model or two-directional microindentations. Quantitatively, the indentation moduli can be properly predicted with the mean-field models. Local stiffness trends within specific tissue morphologies are very weak, suggesting additional factors responsible for the stiffness variations. At macrolevel, the μFE models underestimate the macroscopic stiffness, as compared to tensile tests, but the correlations are strong.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the fabrication and field emission properties of high-density nano-emitter arrays with on-chip electron extraction gate electrodes and up to 106 metallic nanotips that have an apex curvature radius of a few nanometers and a the tip density exceeding 108 cm−2. The gate electrode was fabricated on top of the nano-emitter arrays using a self-aligned polymer mask method. By applying a hot-press step for the polymer planarization, gate–nanotip alignment precision below 10 nm was achieved. Fabricated devices exhibited stable field electron emission with a current density of 0.1 A cm−2, indicating that these are promising for applications that require a miniature high-brightness electron source.